
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and 
Dissertations 

2019 

AC/DC differential bridge based solution-electrode interfacial AC/DC differential bridge based solution-electrode interfacial 

capacitance biosensor, for field-deployable real-time and low-cost capacitance biosensor, for field-deployable real-time and low-cost 

detection of MCLR in drinking water. detection of MCLR in drinking water. 

Sara Neshani 
Iowa State University 

Follow this and additional works at: https://lib.dr.iastate.edu/etd 

 Part of the Electrical and Electronics Commons 

Recommended Citation Recommended Citation 
Neshani, Sara, "AC/DC differential bridge based solution-electrode interfacial capacitance biosensor, for 
field-deployable real-time and low-cost detection of MCLR in drinking water." (2019). Graduate Theses and 
Dissertations. 17756. 
https://lib.dr.iastate.edu/etd/17756 

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and 
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and 
Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, 
please contact digirep@iastate.edu. 

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/etd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F17756&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Fetd%2F17756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/17756?utm_source=lib.dr.iastate.edu%2Fetd%2F17756&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

AC/DC differential bridge based solution-electrode interfacial capacitance 
biosensor, for field-deployable real-time and low-cost detection of MCLR in 

drinking water 
 

by 
 

Sara Neshani 
 
 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY  

 

Major: Electrical Engineering (Very Large Scale Integration) 

 

Program of Study Committee: 
Nathan M. Neihart, Major Professor 

Degang Chen 
Randall L. Geiger 

Liang Dong 
Meng Lu 

 
 
 

The student author, whose presentation of the scholarship herein was approved by the 
program of study committee, is solely responsible for the content of this dissertation. The 
Graduate College will ensure this dissertation is globally accessible and will not permit 

alterations after a degree is conferred.  
 
 
 

Iowa State University 

Ames, Iowa 

2019 

 
Copyright © Sara Neshani, 2019. All rights reserved. 



www.manaraa.com

ii 

DEDICATION 

Dedicated to my lovely and caring parents, Mohammad and Sima, this dedication 

is not comparable to all the effort they have gone through and the unconditional love and 

support they gave to their children. Also to my sister Sonay and brother Roozbeh, 

remembering all joyful memories we made together through years. To my lifetime best 

friend and awesome husband, Kasra, I always feel lucky to have him by my side. To my 

dearest sweetness Kaisan Pasha, my adorable son, I hope this brings a smile on his lovely 

face when he reads these lines in the future. 



www.manaraa.com

iii 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENTS ............................................................................................... v  

ABSTRACT .................................................................................................................. vii  

 INTRODUCTION .................................................................................... 1  
1.1 Background .......................................................................................................... 1  
1.2 Outline ................................................................................................................. 3  

 MEASUREMENT APPROACHES .......................................................... 6  
2.1 Introduction .......................................................................................................... 6  
2.2 Recent Affinity-Based MCLR Biosensors ............................................................ 7  
2.3 Non-Faradaic Electrochemical Impedance Measurements..................................... 9  

2.3.1 Step Measurement ...................................................................................... 11  
2.3.2 Electrochemical Impedance Spectroscopy (EIS) ......................................... 13  
2.3.3 Single-Frequency Sine Wave Excitation ..................................................... 14  

2.4 System Overview and Block Diagram ................................................................ 15  
2.5 Conclusions ........................................................................................................ 17  

 ELECTRODE AND DOUBLE LAYER CAPACITANCE ..................... 19  
3.1 Introduction ........................................................................................................ 19  
3.2 The electrical Model of The Interface ................................................................. 20  
3.3 Description of the Electrode ............................................................................... 23  
3.4 Conclusions ........................................................................................................ 26  

 BRIDGE STRUCTURE FOR INTERFACIAL CAPACITANCE 
MEASUREMENTS ...................................................................................................... 28  

4.1 Introduction ........................................................................................................ 28  
4.2 Capacitive Bridge Systems ................................................................................. 30  
4.3 Proposed Ideal Series RC Bridge Model and Design ........................................... 32  
4.4 Balancing and Mismatch Analysis ...................................................................... 36  

4.4.1 Capacitive Mismatch .................................................................................. 37  
4.4.2 Resistive Mismatch .................................................................................... 39  
4.4.3 Balancing ................................................................................................... 41  
4.4.4 Capacitance Data Extraction ....................................................................... 43  

4.5 Series RC Bridge Implementation for 8-bit Sensing Resolution .......................... 44  
4.5.1 Balancing Arrays ........................................................................................ 45  
4.5.2 Drift Control ............................................................................................... 48  

4.6 Conclusions ........................................................................................................ 51 
 
 
 
 



www.manaraa.com

iv 

 AMPLIFICATION AND FILTERING INTERFACE FOR 
CAPACITIVE BRIDGE TRANSDUCTION ................................................................. 53  

5.1 Introduction ........................................................................................................ 53  
5.2 Amplification and Filtering Design ..................................................................... 58  

5.2.1 Common-Mode to Differential Conversion ................................................. 60  
5.2.2 Noise Analysis ........................................................................................... 63  

5.3 Amplification/Filtering ReadOut Characterization .............................................. 68  
5.4 Conclusions ........................................................................................................ 71  

 REAL-TIME DATA ACQUISITION AND SIGNAL PROCESSING 
FOR BRIDGE BASED TRANSDUCTION INTERFACE ............................................ 72  

6.1 Introduction ........................................................................................................ 72  
6.2 Real-Time Non-Iterative Sine-Fitting Algorithms with Non-Idealities ................ 73  

6.2.1 3 Parameter Sine Fit ................................................................................... 74  
6.2.2 Ellipse Fit ................................................................................................... 75  
6.2.3 Additive White Gaussian Noise .................................................................. 78  
6.2.4 Sampling Clock Jitter ................................................................................. 83  
6.2.5 Non-Coherency .......................................................................................... 86  
6.2.6 Real-Time Processing Requirements .......................................................... 89  
6.2.7 Discussion .................................................................................................. 90  

6.3   Board Sensitivity Test for Capacitance Change ................................................. 91  
6.4 Conclusions ........................................................................................................ 95  

 SYSTEM FABRICATION AND MEASUREMENT .............................. 96  
7.1 Experimental Measurements with the Bridge Transduction Based Biosensor 
for Detecting MCLR ................................................................................................ 96  
7.2 Conclusions ...................................................................................................... 101  

 GENERAL CONCLUSIONS................................................................ 102  

REFERENCES............................................................................................................ 104  



www.manaraa.com

v 

 ACKNOWLEDGMENTS 

My PhD journey at Iowa State University, was full of best memories, priceless 

experience and learning that totally turned me into another person. First and foremost, I 

would like to thank my wonderful adviser Dr. Neihart, he is a perfect teacher not only in 

technical courses but also life lessons. I specifically thank him to help me understand what 

the word “precise” actually means, and how technical writing should be done. All the work 

written in this dissertation would have not been presented here without his continuous 

advice and technical discussions. I also give my regards to Dr. Neihart’s kind family for 

making our group gatherings so memorable. I want to sincerely thank Dr. Chen, for all 

very useful discussions about this project with him. His deep and very wide knowledge of 

technical matters and very smart ideas have always shed a light in my research path. I have 

learned a lot from him, and cannot thank for all these using simple words. 

I had great time doing research and performing experiments, in Coover 1045, 

interacting closely with Dr. Dong group. I want to thank Dr. Dong not just as my committee 

member, but for his friendly behavior. Watching his very organized research attitude and 

active atmosphere he created in his group is a great inspiration for me. As a great professor 

I give many thanks to Dr. Lu, it was valuable opportunity for me to take his biosensors 

course and learn most of sensing fundamentals that gave me better insight for my own 

research. I am very grateful about the precious comments on my work at my preliminary 

exam from Dr. Geiger, the points he made helped the improvement of our work. I sincerely 

thank Dr. Huang for accepting to be on my committee for the final exam. 

I have had many discussions on my research with Dr. Azahar Ali, and he helped 

me a lot with developing new surface chemistry, I want to thank him for his time and 



www.manaraa.com

vi 

efforts. Whenever, I needed a component for my tests or practical advice for the 

implementations, Lee Harker from electronics and technology group at ECE, helped me 

with great patience, I want to thank him for the time he spent solving those issues. 

I have met and worked with many great friends at the electrical engineering 

department, Yifei Li, Huanhuan Zhang, Byron Montgomery, Scott Melvin, Jayaprakash 

Selvaraj, Aditya Suresh and Subhanwitt Roy are my dear friends and colleagues at wireless 

systems lab, I wish all of them the greatest success. The office, group gathering and 

conference travel memories are just some of the precious experiences I had with them. 

Again and once again I want to thank my family, who gave me the courage and 

support to build a future and receive quality education far from home. I miss them every 

second but carry them in my heart everywhere. My darling husband Kasra and sweet 

Kaisan Pasha I want to tell you two treasures of my life, how I appreciate all your emotional 

support and going through ups and downs of my graduate life side by my side.  



www.manaraa.com

vii 

ABSTRACT 

Microcystin-LR (MCLR, one of the most toxic and commonly found products of 

cyanobacteria in freshwater resources, threatens human health and the livestock. WHO has 

set a standard limit of 1	   𝜇𝑔 𝑙⁄  for the concentration of MCLR in drinking water. The lab-

based, specialized water quality monitoring tests for this purpose are not only expensive 

but also slow and require sample preparation and transportation from distant sites. 

Therefore, there is a need for a handheld, field-deployable and low-cost biosensor to make 

frequent water quality monitoring easier.   

Many field-deployable biosensors with applications in environmental monitoring 

and healthcare where concentrations of interest are on the order of 𝜇𝑔/𝑙 and fewer face 

challenges in achieving high dynamic range and lower detection resolution due to the 

resultant small fractional change in the transducer characteristics. Additionally, non-

faradaic label-free biosensors for MCLR type applications face difficulty in real-time data 

analysis due to signal drift, non-specific binding of non-target particles and last but not 

least noise coming from both transducer and readout electronics.  

This dissertation is mainly focused on utilizing electronic circuit methods to fill the 

gap of reading small responses from the bio-transducer with sufficient accuracy and 

sensitivity. Differential bridge based transduction as sensitivity booster and careful design 

of amplification unit and real-time signal processing capable of extracting signal 

information buried in noise are part of the presented work that achieves 8-bit resolution 

within a  1% full-scale transducer fractional capacitive change. 
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   INTRODUCTION 

1.1 Background 

Cyanobacteria harmful algal blooms, Fig. 1.1(a), (CyHABs) and their production of 

numerous potent toxins (i.e., cyanotoxins) threaten global freshwater supplies [2]. Toxic 

CyHABs have been reported from 57 countries around the world and at least 27 states in the 

United States [3]. Microcystin-LR (MCLR), Fig. 1.1(b), one of the most toxic and commonly 

found products of cyanobacteria has been reported as the cause of several incidents of wild and 

domestic animal poisonings, as well as human injury and deaths. The liver is the primary organ 

affected by MCLR, but it can also affect the kidneys, colon and neural system [5]. Besides, the 

accumulation of cyanotoxin variants in the food chain (e.g., lettuce, catfish, milk) is one other 

long term harmful threat for human health [6]. These harmful toxins are not removed from the 

drinking water with the current common water refining methods, in light of this, the World 

Health Organization (WHO) has set a standard limit of 1	   𝜇𝑔 𝑙⁄  for the concentration of MCLR 

in drinking water [7]. 

 Many states have implemented freshwater HAB monitoring programs, but current 

water-quality monitoring efforts often require someone to visit each body of water and take 

physical samples which are then transported back to a laboratory for analysis by either enzyme-

linked immunosorbent assay (ELISA) [8] and/or liquid chromatography tandem quadrupole 

mass spectrometry (LC-MS/MS) [9]. These tests are expensive, ranging from $30-$80 per 

sample. Moreover, these costs do not include sample collection and preparation, which can 

dramatically increase the total cost, especially when sampling locations are remote or separated 

by large distances. Also, these tests require specialized, often expensive equipment and 

advanced training to perform, making it difficult for non-technical people, such as farmers, to 
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monitor water bodies (e.g., farm ponds used to water livestock) that may not be otherwise 

monitored. 

For water quality monitoring applications involving toxins like MCLR, the target 

concentrations are generally very small (less than 1	   𝜇𝑔 𝑙⁄ ) on the other hand, these applications 

require frequent and regular daily or weekly monitoring. The general principle for detecting 

particles like proteins (toxins such as MCLR family are generally considered as protein-like 

species) or DNA is affinity-based sensing where a capturing antibody is immobilized on a 

metallic surface (usually gold) to capture the specific analyte in the sample.  

Although various biosensing techniques like surface plasmon resonance [10] or quartz 

crystal microbalance [11] can be employed for affinity probe-target binding, electrochemical 

biosensors which utilize an electrical signal (voltage or current) to excite the interface are 

considered superior options for making in-situ tests with reasonable accuracy and lower cost. 

These systems consist of a bio-functionalized surface with the specific antibody that binds to 

the target bio-molecule like a toxin in the sample, a transduction unit that translates the 

chemical phenomena of binding to a quantifiable electrical signal and a read-out interface unit 

 

Fig. 1. 1 Lake with hazardous algal blooms, Nebraska, USA, July 2017 (a), MCLR 
chemical structure (b) 

 

 

 

 

(a) (b)  

Fig. 1.1 (a) Algal blooms at lake Erie, the growth of Microcystin, October, 2011 [1], (b) 
MCLR chemical structure [4]  
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that amplifies the translated response and acquires the final data for processing. Fig. 1.2 shows 

the general schematic for an electrochemical biosensor system. Currently, most of the research 

on this subject is aiming to develop sensitive label-free test methods with decreased cost per 

test by optimizing the transducers type, shape, size, and the bio-functional layer immobilization 

process [12–15]. Moreover, these optimized transducers and functionalization methods, if 

employed within a handheld simple to operate device, can facilitate frequent monitoring in the 

field, which, in turn, dramatically reduces the time and cost required per test [16]. Thus, 

research on the development of electronic handheld real-time and field-deployable biosensor 

systems for water quality monitoring to interface with the electrochemical transducers is an 

interesting research topic that addresses an ongoing real-life issue and serves the wellbeing of 

humans and livestock. However, challenges are associated with the design of such real-time 

biosensing systems, as very small target concentrations result in weak response signals. This 

dissertation is mainly focused on utilizing electronic circuit methods to fill the gap of reading 

small responses from the bio transducer with sufficient accuracy and sensitivity for the specific 

case of monitoring the MCLR concentration in water resources. 

1.2 Outline 

The very small full-scale fractional changes with binding even with optimized 

transducers for MCLR necessitates the development of sensitive read-out interfaces that can 

 

Fig. 1.2 General biosensor system for real-time in-situ measurements (the sample interface 
is an example of toxin-antibody detection) 
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overcome the design challenges and achieve high dynamic range and low detection limit for a 

field-deployment. This dissertation is approaching this problem step by step to find the most 

suitable circuit method for the characterization of MCLR concentrations in the field.  

Chapter 2 reviews some recent MCLR biosensors and the detection methods. Affinity-

based sensing methods provide a faster and cheaper solution; therefore, the most popular 

measurement methods for affinity-based transducers are studied, and single frequency 

impedance (capacitive) sensing is utilized for the biosensor design, and a high-level system 

structure is given based on the explained design challenges.    

Chapter 3 explains the capacitive transducer and principle of solution-electrode 

interfacial capacitance. The electrode functionalization method and characterization that helps 

to pick the operation frequency in the presented work are also introduced in Chapter 3. 

In Chapter 4, we explore the best bridge model that is suitable for non-faradaic 

capacitive measurement as well as the excitation and bias requirements, ways to alleviate drift, 

nonspecific binding, noise, and other potential interferences. Utilizing a bridge with an 

optimized structure for interfacial capacitance measurement, in this way, acts like a secondary 

transducer that improves sensitivity and overall dynamic range of the biosensor. It is still very 

important to design a proper readout interface for the amplification of the differential response 

at the bridge output the details for the design of amplification unit compatible with differential 

bridge interface is given in Chapter 5. For real-time implementation, it is also necessary to 

develop a fast and low-cost data acquisition and signal processing method. The amplification, 

data acquisition, and signal processing unit are designed with the total expected full-scale 

fractional capacitance change and detection resolution (minimum detectable capacitive change 

at the transducer corresponding to the minimum detectable MCLR concentration) requirements.  
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The detailed approach and design trade-offs for the real-time data acquisition and 

processing unit are presented in Chapters 6. These design details can also be used as a guideline 

for designing any biosensor amplification and real-time signal acquisition unit. The 

experimental setup and actual capacitance measurements with gold bio-functionalized 

electrodes is demonstrated in Chapter 7 as proof of concept.  
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  MEASUREMENT APPROACHES 

2.1 Introduction 

As mentioned in the previous chapter, detecting the safe limit of MCLR is crucial specifically 

to prevent direct exposure of humans and animals to highly contaminated water resources. A 

variety of lab-based methods form the expensive and accurate LC/MS [17-18] to the sensitive 

ELISA [8], [19] have been used for detecting MCLR and reaching detection levels as low as 

𝑛𝑔/𝑙. Direct affinity-based immunosensors, however, are superior low-cost and label-free 

alternatives for the expensive lab-based methods that localize the binding events on a solution-

electrode interface. Fig.  2.1 shows the general label-free detection at the interface of an 

antibody functionalized metal electrode with a solution containing the related analyte. The 

insulation layer on the electrode surface is to prevent reaction with other particles in the solution 

and will be further discussed in the capacitive transducer section in Chapter 3. With the label-

free immunosensor the goal is to detect a change in the interface characteristic by binding. This 

chapter will elaborate more on some recent affinity-based MCLR biosensors that offer cheaper 

and faster detection suitable for field deployment. By discussing the pros and cons of these 

works, the impedance biosensor concept and measurement techniques is picked as the desired 

 
Fig. 2.1 The principle of affinity-based label-free immunosensors, binding events occur at 

the solution and functionalized electrode interface 
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solution for the MCLR detection, by exploring the corresponding design challenges, finally, our 

general proposed idea for the development of handheld MCLR biosensor is given in this 

chapter. 

2.2 Recent Affinity-Based MCLR Biosensors 

Research on MCLR detection in recent years has been developed in a direction to make the 

monitoring process faster, easier, and cheaper. In 2013, Shi et al. developed an automated online 

optical biosensor for real-time monitoring of MCLR risk in drinking water [20]. The system 

utilized an indirect competitive detection method, shown in Fig. 2.2, in which various samples 

containing MCLR are premixed with a certain concentration of fluorescence-labeled anti-

MCLR-mAb. Next, this mixture flows through a chip with an immobilized MCLR capture 

probe. The remaining labeled antibody now binds to the immobilized MCLR; after washing the 

surface with buffer, a laser beam is turned on to produce the response fluorescence signal 

incorporating the remaining labeled antibody that is binding to the capture probes. With this 

method, samples with higher toxin concentration will produce a lower fluorescence signal.  

 

Fig. 2.2 Indirect competitive detection method using fluorescence label [20] (recreated)  
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     The quantified detection ranges for this biosensor, are  0.2 𝜇𝑔 𝑙⁄  to 4	   𝜇𝑔 𝑙⁄ . Although the 

proposed biosensor can be used in the field, the overall system is not cost-effective. For point-

of-care applications, in addition to the smaller size and lower cost, a simple structure with no 

sample preparation is desirable. Not only do labels complicate the procedure, but it has also 

been demonstrated that labels alter the binding characteristics of biomolecules, which is a major 

concern, specifically for protein family [21].  

For the case of label-free capacitive transduction, Loyprasert et al. developed a label-free 

capacitive immunosensor with sensitivity for MCLR concentrations ranging from 10./ 𝜇𝑔 𝑙⁄  

to 100 	  𝜇𝑔 𝑙⁄  [12]. The detection principle is based on immobilization of anti-MCLR-mAb 

antibody on the surface of gold electrodes with silver nanoparticles added and coated by self-

assembled thiourea monolayers. The modification of the gold surface and the capacitances 

representing the chemical layers on the electrode are shown in Fig. 2.3. The surface of the 

electrode being blocked for charge transfer, and the overall electrode-solution interface is 

modeled like a capacitance in series with a solution resistance. Utilizing a Potentiostat lab 

 

Fig. 2.3 Capacitive immunosensor developed by modifying the surface of gold electrode 
with self-assembled monolayer, and MCLR antibody, each chemical layer at the gold 

surface is represented by a capacitance in series with other layers [12] (recreated) 
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instrument, the interface capacitance and solution resistance are extracted by a rather 

complicated fitting algorithm. The capacitance decrease is measured with a flow injection setup 

in [12] after the response signal reaches a stable state with each MCLR sample injection, the 

electrode is refreshed chemically, and the next MCLR sample is injected. The obtained  

capacitance change is effectively linear with the log-scale MCLR concentration utilizing 

transducer with and without nano-gold particles. Although, this approach is label-free and less 

costly while maintaining high sensitivity but the measurement approach is not simple for field-

deployment.  

Another label-free optimized transduction approach that utilizes gold electrode modified 

with polytyramine, gold nanoparticles for easy MCLR detection is reported in [22]. The 

designed transducer reaches 0.01 pM MCLR concentration sensitivity at lower limit of 

detection (LoD). But the liquid chromatography coupled to MS/MS detection is employed in 

[22] for the measurement. This costly method requires lab-grade and complicated measurement 

tools and of course not suitable for real-time field deployment. Development of an easy to 

operate, low-cost, small size real-time field-deployable biosensor system for MCLR detection 

is therefore still an open problem for researchers. 

2.3 Non-Faradaic Electrochemical Impedance Measurements 

Electrical biosensors are generally categorized into three groups, amperometric, 

voltammetric and impedance biosensors [16, 21]. The amperometric and voltammetric sensing 

methods are merely DC excited and based on the response signal type that s measured the sensor 

is either amperometric or voltammetric [16]. The dynamic range and resolution of these sensors 

are limited by the capability of the instrumentation to measure tiny current or voltage levels 

occasionally in the presence of the transient ambient or electrode related drifts. Moreover, these 
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types of measurements require the addition of electroactive species (redox) to the solution which 

is an extra step that might also affect the natural binding efficiency [23]. Impedance biosensing, 

on the other hand, involves a small amplitude AC excitation often accompanied by a DC bias, 

where the ratio of the excitation voltage to the resultant current is measured. Impedance based 

biosensors provide an attractive solution to developing inexpensive, portable, and easy-to-use 

devices for monitoring cyanotoxins [16]. 

Impedance based biosensors translate an electrochemical change in the reactive 

characteristic of an electrode-solution interface into a measurable electric signal [21]. A 

primary design goal is to realize sensors that can achieve dynamic range and sensitivity that is 

comparable to traditional analytical methods. Electrochemical impedance spectroscopy (EIS) 

is a standard method, accomplished by exciting the transducer with a small AC voltage within 

a range of frequencies and study the resultant current magnitude and phase shift with and 

without target present, in this way the ratio of the voltage to current yields an impedance. By 

fitting a model to the impedance spectrum, the transducer interface characteristics can be 

interpreted as familiar electrical elements like capacitance and resistance. For real-time field 

deployable applications however, single-frequency excitation is generally utilized for lower 

cost and complexity [24], this method will be discussed in the following section.  

Various measurement methods have been developed for label-free non-faradaic impedance 

characterization that is simpler for field-deployment without the need for a redox probe in the 

sample. These methods are also performed either with DC or AC excitation. The DC methods 

mainly characterize the time constant of the electrode-solution by charging the interfacial 

capacitance. AC methods characterize the interface impedance by exciting the interface with a 
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small AC signal over some range of frequencies. These techniques are explored in the 

following. 

2.3.1 Step Measurement 

Researchers utilize simple series RC model for non-faradaic impedance measurements,  the 

ability of an interface at polarized electrode-solution interface to store charge resembles a 

capacitance, and the associated solution conductivity is represented by resistance in series [25-

26]. The reason for this series RC modeling and general interface models are explained with 

more details in Chapter 3. The step method characterizes interfacial capacitance using DC 

measurements. 

 For this measurement setup, three types of electrodes are required: the working electrode 

(WE), that is coated with insulation and antibody and is generally an inert metal such as gold; 

a reference electrode (Ref), which is generally Ag/AgCl with a well-defined DC voltage; and a 

large platinum or gold counter electrode (CE) to collect the cell current. The counter electrode 

 

Fig. 2.4 Working principle of Potentiostat device, a control amplifier  (CA) compares 𝑉23  
and 𝑉4564 , to have the voltage applied between refernce electrode (Ref) and working 

electrode (WE) equal to the desired voltage 𝑉23 . The flowing current (𝐼4564) between WE 
and counter electrode (CE) is measured using a resistor 𝑅9. 
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surface area is typically much larger than the working electrode. A 50 mV step voltage (𝑉23) is 

applied between the working and reference electrodes and the resulting current (𝐼4564) is 

collected by the counter electrode. This principle is known as Potentiostat-type measurement 

[27] and is shown in Fig. 2.4. The control amplifier (CA) is utilized to maintain the voltage 

between the working and reference electrodes, 𝑉4564, equal to the applied signal 𝑉23  [27].  

The electrochemical cell current is flowing between the counter and working electrodes, and 

the current-to-voltage conversion is carried out by the variable resistance, 𝑅9. The interface 

capacitance, 𝐶234, is charged by the application of the potential step with amplitude 𝑢, and the 

cell time-dependent current,	  𝑖4564(𝑡), decays with time after the excitation. The relationship 

between the exponentially decaying cell current and 𝐶234 and solution resistance, 𝑅6AB, is: 

 𝑖4564(𝑡) =
D
EFGH

𝑒(.4/EFGHJKLM) (2.1) 

Equation (2.1) indicates that the natural logarithm of the cell current has a linear relationship 

with the surface capacitance. This parameter can be extracted from current data by the least-

square fitting [26]. The quality of the acquired data in this method depends on the time constant 

of the cell, 𝑅6AB𝐶234, and very high sampling rates may be required to get sufficient samples 

before the current decays to zero.  

In [28, 29], the step method is used for characterizing the capacitive transducer for glucose 

and Cholera toxin. Fig. 2.5 shows the experimental setup used in [28], which shows a flow 

injection and lab-grade Potenstiostat along with a high-speed data acquisition unit (Keithley 

575) that is required to acquire the current at Potentiostat output with sufficient accuracy. This 

lab grade characterization with a very high sampling rate, small current at the output, and the 

required complicated fitting algorithm are not favorable for low cost and simple real-time 

implementation of data acquisition/processing of a field-deployable biosensor.   
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2.3.2 Electrochemical Impedance Spectroscopy (EIS) 

  Generally, EIS measurements include a sweep of frequency and obtain an impedance 

spectrum. A small AC signal is applied between the working and reference electrodes, and the 

resulting current is measured between the working and counter electrodes using the same setup 

shown in Fig. 2.4 [13, 30-32]. In this method, the interface models described in the previous 

section are used to fit the magnitude and phase of the measured impedance and to evaluate the 

change in the corresponding model element with binding.  

        As an example, EIS has been used in [13] for measuring the nano-interdigitated capacitive 

transducers on a polymer substrate. The interface impedance bode plots (magnitude and phase) 

are obtained at varying electrolyte solution concentrations, these curves are helpful to pick the 

suitable solution concentration and the frequency range where the interface capacitance in the 

model for interface, is dominant for the designed transducer. Although the frequency sweep in 

the EIS method is very useful for characterizing and fitting an interface model for different 

transducers, it is not efficient for fast real-time measurements. A popular sub-division of EIS 

measurements for the non-faradaic interface model is single frequency sine wave excitation 

method [21], which is quicker and not very complicated for real-time implementation. 

 

Fig. 2.5 Experimental setup for step measurement used in [28], other than the lab-grade 
instrument Potentiostat for cell excitation, the very fast data acquisition unit, Keithley 575 
is also required to sample the decaying cell current with very high speed, the samples are 

stored in computer for the post-processing to extract the cell time constant.(recreated) 
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2.3.3 Single-Frequency Sine Wave Excitation 

A less cumbersome and low-cost method for non-faradaic, real-time interface capacitance 

measurement is single-frequency sine wave excitation. In addition to being faster, single-

frequency AC excitation allows the transient response of the biosensor to be acquired, which 

can be used to monitor the binding phenomena and extract other useful information such as the 

association and dissociation coefficients [21, 24, 33-35]. The amplitude of the single-frequency 

sine wave excitation signal should be small (typically less than 50	  𝑚𝑉), so as not to damage 

the recognition layer and avoid non-linear distortion due to any nonlinear current-voltage 

relationships [24]. For single frequency measurements, it is vital to pick the frequency of 

excitation within the range where 𝐶234 dominates the impedance spectrum. This frequency range 

depends on the geometry and makeup of the electrode and also coating layers but is typically 

less than 15	  𝑘𝐻𝑧 [21].  

Fig. 2.6 shows a general block diagram of a portable single frequency capacitive biosensor. 

As shown in Fig. 2.6, a chemically functionalized metal (gold) electrode with redox reaction 

blocking coating and a highly specific antibody, is immersed in a solution containing the target 

analyte. Two electrodes are generally sufficient for this type of measurement, one as the 

working electrode, with the chemical functionalization, and the second as the counter electrode. 

 

Fig. 2.6 General block diagram of a portable single frequency impedance biosensor, with 
real-time response amplification and digitization  
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The single-frequency excitation signal is applied between these two electrodes. The surface area 

of the electrodes and the frequency of excitation are chosen in such a way that interfacial 

capacitance at the working electrode in this path is dominant. An amplification unit in the read-

out interface system is required immediately after transduction, as well as a proceeding data 

acquisition and processing unit for real-time operation.  

Each segment of the general diagram in Fig. 2.6 can be implemented with various design 

approaches that are based on the required detection conditions. Although, multiple methods 

have been reported on the design of more sensitive affinity-based impedance transducers for 

MCLR, for sensitive, accurate and low-cost sensing of MCLR with single frequency excitation 

in real-time the proceeding blocks need careful design considering some main design challenges 

that will be discussed in the following.   

2.4 System Overview and Block Diagram 

As discussed in the previous section, Loyprasert et al. used the step method for 

measuring the performance of their transducer for MCLR, and they employed a benchtop lab-

grade Potentiostat instrument for readout process.  A closer look at their reported results reveals 

one significant challenge in developing a handheld device to replace their benchtop lab 

equipment. The baseline transducer capacitance before the toxin injection in [12] is 

3,380	  𝑛𝐹/𝑐𝑚W, however, the total capacitance change reported for the entire practical range of 

concentrations is only about 30	  𝑛𝐹/𝑐𝑚W. This result means that the readout circuitry should be 

able to effectively detect even a less than 1% fractional change in the transducer capacitance. 

This challenge is associated not only with MCLR detection but also many biosensors with 

applications in environmental monitoring and healthcare where concentrations of interest are 

on the order of 𝜇𝑔/𝑙  and less.  
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This small fractional change at the same time brings about design challenges to obtain a high 

dynamic range and lower detection limit. Additionally, non-faradaic label-free biosensors face 

difficulty in real-time data analysis due to problems such as signal drift, non-specific binding 

of non-target particles, and noise coming from both transducer and readout electronics. Various 

electrochemical and circuit techniques can be utilized to reduce the effect of the 

abovementioned issues and achieve sufficient accuracy while maintaining low cost in point-of-

care applications. For example, differential or dual-sensing (two sensors one with recognition 

element and one without or two electrochemical cells one with and one without analyte) has 

been introduced in the past to overcome the effect of non-specific binding and drifting response 

caused by that [21, 24, 36-37]. A chemical approach to alleviating the non-specific binding of 

proteins according to previously reported literature is bovine serum albumin (BSA) co-

immobilized in the recognition layer [24]. DC bias additional to AC applied to the transducer is 

also said to be effective on reducing the drifting both by establishing a stable interfacial 

capacitance and at the same time by controlling the leakage oxidation/reduction reaction 

currents [38-42]. To overcome the challenge electronically, employing differential circuit 

topologies and modern CMOS technology, reduces the effect of common-mode interferences 

and noise.  

Fig. 2.7 demonstrates the general system-level solution for read-out implementation for a 

non-faradaic MCLR impedance biosensor proposed in this dissertation. Two primary antibody 

 
Fig. 2.7 Proposed fully differential structure for a simple impedance MCLR biosensor, 

the process of designing each block will be given in the following chapters 
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functionalized transducers such as the ones in Fig. 2.1 are employed in a differential scheme, 

and a secondary transducer boosts the sensitivity utilizing the differential response from the 

primary transducers. Having said that, the target concentrations are very small; an 

amplification unit is added in the fully differential path to elevate response amplitude to 

quantifiable levels. Employing the single frequency AC excitation gives the option to use a 

narrow band pass filter to get rid of the out of band noise. A digitization and processing unit 

proceeds the filtering so that the final detection result can be obtained directly in the field. 

Each block in Fig. 2.7 requires specific considerations that are application-driven, and the 

optimum design for each block is made regarding the target resolution and potential system 

non-idealities. The following chapters describe the criteria for picking the design parameters 

and structures of each block, from the transducer type and functionalization method, excitation 

signals, frequency of operation, secondary transduction circuit to the amplification gain, and 

common-mode rejection, filtering bandwidth and digitization setup. Many essential design 

details are given to achieve a specified target dynamic range for a handheld simple to operate 

biosensor with a very small fractional change in the transducer characteristic upon detection. 

2.5 Conclusions 

The affinity based impedance biosensor and single-frequency sine wave excitation 

method, are promising solutions to overcome the challenges of designing a real-time cost-

effective and field-deployable MCLR biosensor. The optimized transducers from the literature 

that are characterized by lab instruments, provide useful information about the design goals 

and parameters to consider, like the total fractional change the transducer characteristics and 

practically achievable detection resolution. To design a biosensor prototype that gets similar 

results in accuracy and sensitivity compared to the recent MCLR literature we the structure 
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shown in Fig. 2.7.  The details regarding the design of each block in Fig 2.7 are given in 

following chapters. The primary transducers design and the chemical functionalization are 

explained in Chapter 3. Besides, the important system design factors like the electrode-solution 

interface electrical model and the specific operation frequency for single-frequency excitation 

are explored.   
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  ELECTRODE AND DOUBLE LAYER CAPACITANCE 

3.1 Introduction 

 Capacitive transduction is an affinity impedance biosensor and is based on the double 

layer capacitance theory. This theory states that when a metal polarized electrode is immersed 

in an electrolyte solution, as shown in Fig. 3.1(a), the charged particles (e.g., solvated ions 

along with solvent molecules) become oriented towards and adsorbed onto the electrode 

surface by electrostatic and thermal forces that counterbalance the charge on the electrode 

surface. However, there is a distance of closest approach to the electrode surface shown in Fig. 

3.1(a) with double arrows, called the Stern layer which is roughly as wide as the radius of an 

ion plus the diameter of the solvent molecule [21, 24-25]. The distribution of non-adsorbed 

solvated ions from the Stern layer in a 3-dimensional space, toward the bulk of the solution, 

forms a so-called diffuse layer that can be seen in Fig. 3.1(a). The thickness of, and the total 

charge contained within, the diffuse layer is dependent on the ionic strength of the solution and 

the excitation potential of the electrode. A higher ionic concentration will lead to a more 

compact diffuse layer, and a higher excitation potential leads to shorter diffuse distance.  

If the polarized metal electrode is separated from the diffuse layer by a charge-free region, 

it can be modeled by two serial capacitances, 𝐶X45Y3 and 𝐶Z2[[ , which results from the Stern 

layer and the diffuse layer, respectively, as shown in Fig. 3.1(a). The value of 𝐶X45Y3, is 

dependent on the dielectric properties of the solution and thickness of the Stern layer, and is 

therefore constant with respect to electrode DC bias and background concentration. The value 

of 𝐶Z2[[ , on the other hand, is dependent on the background concentration and the potential at 

the Stern boundary with respect to the bulk solution potential [25].  
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Immobilization of antibody on the insulation coated electrode surface (to mitigate chemical 

redox reactions) adds series capacitances, 𝐶\342]A^_  and 𝐶`36, in series with the Stern layer 

capacitance, shown in Fig. 3.1(b). Later binding of the analyte to the immobilized antibody, 

alters the value of 𝐶\342]A^_ , and pushes the Stern layer further toward the bulk solution, if the 

makeup of the electrode is such that 𝐶\342]A^_ , is the smallest, and therefore dominant, 

interfacial capacitance, the transducer becomes sensitive to binding, shown in Fig. 3.1(c). 

Binding of the antibody with the analyte, in this case, will appear as a change in the interfacial 

capacitance that is the primary mechanism of detection in capacitive affinity biosensors [25]. 

3.2 The electrical Model of The Interface  

The theory of double-layer capacitance is utilized for affinity-based impedance 

biosensor measurements within two categories; Faradaic and non-Faradaic [21]. Faradaic 

impedance biosensors are based on charge transfer from, and to, the electrode, i.e. redox 

  

 

Fig. 3.1 (a) Double layer model at charged bare electrode-solution interface,(b) the coated 
electrode with antibody and solution interface with the associated capacitances model, (c) 
relocation of stern and diffuse layers and modified interface capacitance e with antibody-

analyte binding  
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reactions between the solution and working electrode surface. In this process, a metal working 

electrode (not covered with insulation) coated with antibody is immersed into an electrolyte 

solution containing electroactive redox species and analyte, and the electrode is then excited 

with both AC and DC voltages. A reference electrode with a well-defined DC voltage is also 

immersed into the solution so that by adjusting the DC bias on the metal working electrode, 

with respect to the reference electrode, sufficient energy is provided for oxidation and 

reduction reactions to take place at the working electrode surface.  

To account for the interactions of the redox probe with the working electrode in a Faradaic 

process, the interface is modeled as shown in Fig. 3.2 (a). The 𝑅a4, represents the charge transfer 

resistance at the interface.  𝑍c, is an impedance accounting for the finite diffusivity of redox in 

the solution, 𝐶234, is the equivalent interface capacitance (including 𝐶X45Y3, 𝐶Z2[[  and 𝐶d342]A^_) 

and 𝑅6AB, represents the ionic strength of the solution. As analyte or target molecules bind to the 

immobilized antibody, the chances of the redox probe reacting with the working electrode 

surface are hindered. As a result, the charge transfer resistance, 𝑅a4, increases while 𝐶234, 

decreases. The higher the concentration of the analyte, the larger the increase in 𝑅a4. 𝑍c, is an 

impedance with a constant 45∘ phase shift across all frequencies, the absolute value of this 

impedance is, however, proportional to the reciprocal of the square root of frequency as well as 

a coefficient that depends on the concentration of redox species and their diffusivity in the 

solution [25]. 

The component, 𝐶234 in Fig. 3.2(a), is used for fitting the impedance spectrum, is not modeled 

as a pure capacitance. Chemical inhomogeneities and adsorption of ions are the major causes 

of the interface capacitance often having a phase shift of less than 90∘ [21]. This effect is 

modeled with a “constant phase element” instead of a pure capacitance, the impedance of the 
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constant phase element is formulated as 1/(𝑗𝜔𝐶234)i, 𝜔, is the angular frequency in 𝑟𝑎𝑑/𝑠𝑒𝑐 

and 𝑚 is an ideality factor ranging between 0 and 1 [25].  

Faradaic biosensors, although reported to produce stronger signals upon detection [24], are 

less favorable for real-time point of care applications first because they require the addition of 

redox to the sample, and second, some reports compare Faradaic results to ELISA sensing 

methods, and show that the use of redox couple in the solution affects the sensing layer and 

decreases the binding yield [23]. 

For the non-faradaic capacitive method, the working electrode and solution interface mainly 

behaves like a capacitance. The working electrode surface is blocked with a thin insulative layer 

to prevent any faradaic reaction with the electrode before the antibody is immobilized, the non-

faradaic interface model is shown in Fig. 3.2(b). By blocking the electrode surface and absence 

of redox couple, the interface for the non-faradaic capacitive transducer is simply modeled as a 

series of surface capacitance, 𝐶234, and solution resistance 𝑅6AB. The resistance, 𝑅B5dn , is 

indicative of the surface block layer resistance and typically has a very high value on the order 

 

Fig. 3.2 (a) Faradaic interface model; the 𝑅a4 represents the charge transfer resistance at 
the interface.  𝑍c is an impedance accounting for the finite diffusivity of redox in the 

solution, 𝐶234 is the equivalent interface capacitance (including 𝐶X45Y3, 𝐶Z2[[  and 
𝐶d342]A^_) and 𝑅6AB represents the ionic strength of the solution , (b) non-faradaic 
capacitive transducer is simply modeled as series of surface capacitance, 𝐶234, and 

solution resistance 𝑅6AB, the resistance, 𝑅B5dn , is indicative of the surface block layer 
resistance 
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of 𝐺Ω [21, 24]. The binding recognition element in the model, in this case, is mainly the 𝐶234, 

that decreases with binding of analyte to antibody, the electrodes that are chemically modified 

for non-faradaic measurements, are generally referred to as capacitive transducers. 

3.3 Description of the Electrode 

The discussed non-faradaic method with capacitive transducers is employed for MCLR 

biosensor in this work. Patterned gold electrodes, shown in Fig. 3.3(a), are purchased from 

Pine research instrumentation for experimental validation. Each sensor chip contains a circular 

working gold electrode with 2	  𝑚𝑚 diameter, a large gold counter electrode, and a reference 

electrode. The gold metal is widely used for capacitive transducers because it is an inert metal, 

and various surface chemistries can be applied to the gold surface for antibody or other probe 

immobilization [39]. The working electrode and the counter electrode are used in the 

experimental process, but the on-chip reference electrode is left floating, and an external 

Ag/AgCl reference electrode is used.  

The chemical surface functionalization is carried out at the Iowa state university chemistry 

department Fig. 3.3(b) shows the chemical functionalization steps of the working electrode. 

 
(a)                                            (b)                                                    (c) 

Fig. 3.3 (a) Gold patterned electrodes, (b) Functionalization steps, (c) Cyclic voltammetry 
test after each functionalization step 
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The first chemical layer on the gold surface is made by incubating the electrode overnight in 

11-MUA (11- Mercaptoundecanoic acid) solution that forms the self-assembled monolayer 

(SAM) a compact layer blocking the gold surface from charge transfer reactions with the outer 

solution. Next, the EDC-NHHS (EDC: 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide, 

NHHS: N-hydroxysuccinimide) is applied as a linker between 11-MUA thiol groups to 

covalently bound the immobilized MCLR antibody (MC-LR mAb) to the SAM layer at the 

final step. At later stages of the project, the first step of the electrode functionalization is 

modified, and the 11-MUA: 11- Mercaptoundecanoic acid is replaced with Thioglycolic acid 

(TGA, HS–CH2–COOH) for better stability and less drift [41]. Another chemical step is also 

added after the antibody immobilization, which is immersing the functional transducer for an 

hour in the BSA solution to reduce the potential non-specific binding effect during the actual 

experiment. 

One crucial design specification to be verified for the transducer is the quality of the 

surface blocking layer and the least leakage which means a very high leakage resistance to 

avoid faradaic currents and drift. This can be validated using a cyclic voltammetry (CV) test 

by immersing the functionalized transducer in the buffer solution (Phosphate Buffer Saline 

(PBS)) containing the redox probe. For the CV test, a cyclic voltage ramp is applied between 

working and reference electrodes, using the Potentiostat device and with the step measurement 

method setup, and cell current is measured between working and counter electrodes. The 
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measured current plotted against the applied voltage at each functionalization step is shown in 

Fig. 3.3(c). The peaking in the current decreases at each stage, indicating a considerable 

interface leakage resistance (𝑀Ω) after the final step. The CV test is carried out once utilizing 

the lab grade Potentiostat to characterize the functional layer at the working electrode surface. 

Single-frequency AC excitation impedance measurement method is the target of the 

design in this work; therefore, a proper operation frequency needs to be picked by 

 
 

(a)                                                                   (b) 

Fig. 3.4 (a) Magnitude and (b) negative phase spectrum for buffer (PBS) and 0. 1µg/l MCLR 
sample concentration obtained with EIS sweep taken every 7 minutes 

 
 

(a)                                             (b)                                                (c) 

Fig. 3.5 Magnitude % change w.r.t buffer for 0. 01µg/l, 0. 1µg/l, 1µg/l and 10µg/l MCLR 
samples with EIS obtained at (a) 7, (b) 21 and (c) 35minutes 
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characterizing the functional electrode-solution interface impedance with EIS.  A Potentiostat 

is used again for obtaining the interface impedance spectrum across a range of frequencies 

swept from sub-Hz to 100	  𝑘𝐻𝑧. Several impedance spectrums were obtained for a series of 

MCLR samples with concentrations: 0.01µμg/l, 0. 1µμg/l, 1µμg/l and 10µμg/l,  Fig. 3.4 and Fig. 

3.5 show the results of these measurements. The proper frequency of operation for a capacitive 

transducer lies in the range of impedance spectrum where the capacitance element at the 

interface is dominant. This range can be found by observing the bode plots for the range where 

the phase shift is roughly	  90°. The results in Fig. 3.4 shows that for our capacitive transducer, 

this range is approximately from 0 to	  4	  𝑘𝐻𝑧, at lower frequencies, the capacitance is more 

stable with lower drifting, but considering the real-time application and sampling rate 

limitations, the frequency of operation is fixed to roughly 1	  𝑘𝐻𝑧. Fig. 3.5 shows that for lower 

MCLR concentrations, the transducer requires a longer time to show a trackable change with 

respect to baseline capacitance obtained in the buffer, this time is approximately 10 minutes 

for the lowest tested MCLR concentration (0.01µμg/l). Fig. 3.5 also shows that the transducer 

is capable of detecting the varying MCLR concentrations with distinct capacitance levels at 

each step.  The EIS characterization helps the design of the proceeding units of the biosensor, 

specifically for the critical parameter operation frequency. 

3.4 Conclusions 

The series RC, interface model for non-faradaic measurement of a capacitive transducer is 

adopted for the design in this work. The primary transducers are gold patterned electrodes 

modified with SAM, cross linker and  MCLR antibody. The transducers are characterized with 

CV and EIS tests to verify the quality of the chemical surface block with the least potential 

pinholes, and for obtaining the range of frequencies that the interface recognition capacitance 
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is dominant in the model. After characterizing the transducer for sensitivity and operational 

frequency range, a secondary transduction is proposed in this work that incorporates two 

functional transducers within a “bridge” scheme for differential measurement. The design 

approach and proposed bridge structure is given in Chapter 4. 
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  BRIDGE STRUCTURE FOR INTERFACIAL 
CAPACITANCE MEASUREMENTS 

4.1 Introduction 

When tracking a 1% full-scale change in the interface capacitance, noise, non-specific 

binding, and drift are among the primary obstacles against achieving lower detection limits for 

real-time measurements [12, 21, 24, 38]. Sensitive capacitance measurement methods like EIS 

[21, 32] that was discussed in Chapter 2, although popular for the electrochemical solution-

electrode capacitance measurement, are complicated and the ability of these frequency sweep 

methods for tiny fractional change in the capacitance with interference from the environment 

like noise, etc., is not quite clear. Considering the simple implementation and field-deployment 

for capacitance measurement, the commercially available capacitance to digital (C2D) 

converter ICs are good options like work presented in [43] for the detection of cancer 

biomarkers. But this readily available C2D ICs, operate over certain range of full-scale 

capacitance that is not always compatible with the absolute capacitance value of some of the 

electrochemical capacitive electrode transducers. Macro-electrodes that have tens to hundreds 

of 𝑛𝐹 capacitance range like the ones introduced in [12] are not in the range of commercial 

C2Ds. Therefore, the C2Ds cannot always be used to interface with any random capacitive 

transducer made for particular application. 

Other than the abovementioned methods, sensitive secondary transduction with circuit 

techniques can be utilized for sensitivity enhancement and overcoming the issues like noise, 

drift, etc... This chapter focuses on the development of such a secondary transducer employing 

bridge structure. Here it is shown that the previously reported works on bridge systems for 
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measuring an unknown actual capacitance or capacitances of a medium do not work for the 

particular case of electrochemical solution-electrode capacitance.  

Other than compatibility with interfacial capacitance requirements, a differential bridge 

employing two transducers in the bridge opposite legs is proposed here that leads to higher 

sensitivity and better common-mode noise suppression. The quality of the bridge balancing is 

very important considering that the bridge is tracking the tiny response signal related to roughly 

less than couple of percent fractional changes of the capacitive transducers. The bridge 

structure is analyzed in detail in this chapter, and the effect of an initial imbalance on the 

dynamic range and minimum detectable capacitance change is characterized.  

The proposed bridge structure is both DC and AC excited, and the interface is modeled 

with series RC components; the other networks in the bridge are also designed in such a way 

that the bridge can be both AC and DC balanced. The response signal at the bridge output is a 

differential sinusoid, and in the ideal case, the response is zero at the initial balance and any 

change in the response sinusoidal amplitude and differential phase w.r.t. the excitation source 

represents a change in the interface impedance. In other words, the acquired data at the bridge 

output is a complex voltage signal. An analysis of the proposed bridge structure relates the 

capacitance and resistance change at the interface to the amplitude and differential phase or 

the real and imaginary parts of the acquired response, with simple algebraic equations. This is 

a significant advantage for the field deployment because no complex data fitting algorithm is 

required to extract the capacitive change from the response.  

The proposed bridge with fully digital balancing network structures and straight 

forward balancing algorithm that can be carried out by a simple microcontroller is implemented 

with all practical implementation detail and guidelines here. The main design specification is 
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considered an 8-bit detection resolution within a full-scale capacitance change of roughly 1%. 

The setup for actual experiments and proper placement of the electrodes in the bridge are 

shown in this chapter, and the effectiveness of the provided configurable DC bias paths for the 

transducers in drift rate control is experimentally verified. The capacitance measurement 

reliability is verified after a custom amplification and filtering readout board proceeded by a 

data acquisition and processing unit employing a simple microcontroller that is interfaced with 

the bridge. The details for the readout design and capacitance detection with the 8-bit resolution 

are given in the following chapters. 

4.2 Capacitive Bridge Systems  

Bridge structures for characterizing unknown impedances can be used as simple 

secondary transducers before signal amplification leading to higher sensitivity. As previously 

discussed in Chapter 3, solution-electrode capacitive-based functional transducers, using label-

free non-faradaic measurements, are modeled with a series RC circuit model. The impedance 

of an unknown RC circuit (𝐶v and 𝑅v in Fig. 4.1) is classically characterized using either a 

Schering Bridge, Fig. 4.1(a), or a Wien Bridge, Fig. 4.1(b), with the simple balance condition 

equations shown at the center of each bridge [44, 45]. Unfortunately, these bridge circuits are 

 

Fig. 4.2 Two common bridge circuits for characterizing the impedance of an unknown RC 
circuit with the balancing condition equations, (a) the Schering Bridge and (b) the Wien Bridge. 
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so-called AC bridges, utilizing only AC excitation signals, but the interfacial capacitive 

electrodes require a stable DC bias voltage as well.  

 

While a DC bias voltage could be applied to the unknown impedance by super-

imposing a DC offset onto the AC excitation signal, 𝑉23 , the presence of the series capacitors 

(𝐶wand 𝐶W) makes balancing the DC voltages at nodes 𝑉d	  and 𝑉]  impossible. Mismatch in the 

DC voltages at nodes 𝑉d  and 𝑉]  means that the bridge structure is not symmetrical around 

nodes 𝑉d  and 𝑉] . In this case, other than potential drift of the unequally biased transducers, 

given the high proceeding differential gain of the readout circuit, a large amount of common-

mode to differential conversion will take place in the response path. The common-mode to 

differential conversion reduces the overall sensitivity of the sensor and makes the balancing 

cumbersome.  

Other than the classical Schering and Wien bridges, bridge circuit based impedance 

systems for characterizing the capacitance of a medium are reported in [46-49]. These systems 

are useful in certain applications, but for electrode-solution interfacial capacitance sensing, 

some specific modifications are required to make them suitable. One of the major drawbacks 

of these systems is that they are solely AC driven, but electrochemical capacitive electrodes 

need to be biased for capacitance establishing. This electrode bias in interfacial capacitance 

sensing can be used to partially control the real-time DC drift caused by the faradaic leakage 

currents. Therefore a bridge with both configurable AC and DC excitation is required for the 

specified applications.  

These sensors need to be excited with a very small signal amplitude (less than 50 mV) 

to avoid non-linear response and damage to the chemical layer on the surface [21, 24]. The 
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structures in [46] are excited with very large sinusoidal amplitudes. Therefore the sensitivity 

of these systems for a full-scale fractional capacitance change of 1% is unclear. The bridge 

architectures reported in [47-49] do not offer solutions to reduce the common-mode 

interference effects like noise and non-specific binding. Since with the electrochemical 

capacitive biosensors, a change in capacitance is the goal of detection rather than accurately 

measuring the medium under test, the effect of possible initial bridge imbalance on the 

response linearity should be characterized. These issues and the method for the design of a 

suitable bridge structure for electrochemical solution-electrode interfacial capacitance sensing 

to be used along with a discrete real-time amplification readout has not been addressed yet.  

4.3 Proposed Ideal Series RC Bridge Model and Design 

A bridge structure that can overcome the problems associated with the previously 

reported capacitive bridges and compatible with the solution-electrode based capacitive 

transducers, can act as secondary transduction before the readout circuitry. Considering the 

expected very small fractional transducer impedance change sensitivity is one main design 

 

Fig. 4.3 General block diagram of a differential bridge structure for solution-electrode 
interfacial capacitance sensing 
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target for such structure. Differential bridge structure like the one shown in Fig. 4.2 can 

increase the sensitivity if the impedance of both functional transducers, 𝑍5B,xy  and 𝑍5B,Z3, 

change in the same direction. Moreover, all deterministic and common mode interferences 

stemming from the solution, or electrode, will be canceled at the output. For capacitive 

measurements, at the solution-electrode interface, a small AC signal is required for impedance 

sensing, and a specific DC bias is also necessary for establishing the nominal interface 

capacitance as well as controlling faradic drift. Therefore, Fig. 4.2 needs to be modified with 

circuit elements considering the above requirements and proper interface model at the 

frequency of measurement.  

The equivalent model in Fig. 3.2(b) at a capacitive dominant frequency, can replace 

𝑍5B,xy  and 𝑍5B,Z3	  blocks in the bridge. With the series, RC part in the interface model, an AC 

path for the signal is provided. Considering that the large parallel, 𝑅B5dn , forms a DC bias path 

in the bridge, an extra arrangement is required for the DC bias balancing because the 𝑅B5dn  

value for each individual transducer is different and depends on the chemical surface coating. 

To make an independent balancing scheme for the AC and DC signals, the blocks 𝑍],xy and 

𝑍],Z3, should be adjusted accordingly so that they both provide a balanced AC and DC signal 

to the electrode and toward ground. 

The proposed differential bridge with a series RC interface model for the transducers, 

AC, and DC balancing paths is shown in Fig. 4.3.  The resistors, 𝑅^, are responsible for setting 

the DC bias and should be at least ten times larger than the magnitude of the transducer’s 

impedance at the measurement frequency. The maximum value of 𝑅^ is limited by the amount 

of 𝑅B5dn , 𝑅^ should be several orders of magnitude smaller than 𝑅B5dn . A fine-tune variable 

resistor potentiometer can be included in series with one of the 𝑅^’s to compensate for 
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occasional mismatch. The AC balancing path is formed by the series resistors and capacitors 

balancing  𝑅],xy, 𝐶],xy and 𝑅],Z3, 𝐶],Z3	  . 

 For balanced AC output at	  V{	  and V�	  the values of  𝑅],xy, 𝐶],xy and 𝑅],Z3, 𝐶],Z3 

should be matched to 𝑅5B,xy, 𝐶5B,xy  and 𝑅5B,Z3, 𝐶5B,Z3, respectively.  The value of the DC path 

resistors 𝑅^ needs to be set much higher than �𝑅5B,xyW + (1/𝐶5B,xyW 𝜔W) but much smaller than 

the corresponding  𝑅B5dn  to avoid both loading the AC signal path and electrode impedance. 

The response data at the bridge differential output of Fig. 4.3 is the magnitude and 

differential phase of 𝑉d − 𝑉] . Analysis of the bridge output magnitude and phase transfer 

function would make it feasible to relate the transducer capacitance change to either of the 

response magnitude and phase, with simple algebra rather than complicated data fitting 

approaches. Equations (4.1)-(4.3) show the ideal balancing condition for series RC bridge and 

(4.4) and (4.5) show the transfer function for the bridge differential output magnitude and 

phase for the case of initially matched impedances with only transducer capacitances changing, 

 

Fig. 4.4 The proposed block diagram of series RC bridge based on the non-faradaic model 
for solution-electrode interface, with two differentially placed transducers, AC balancing 

networks and DC biasing path 
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i.e. 𝐶5B,xy = 𝐶5B,Z3 = 𝐶5B + 𝛥𝐶5B, 𝐶],xy = 𝐶],Z3 = 𝐶5B and 𝑅5B,xy = 𝑅5B,Z3 = 𝑅],xy =

𝑅],Z3 = 𝑅5B. 

 𝐶5B,xy𝐶5B,Z3 = 𝐶],xy𝐶],Z3	   (4.1)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑅5B,xy𝑅5B,Z3 = 𝑅],xy𝑅],Z3	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (4.2) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑅],xy𝐶],xy + 𝑅],Z3𝐶],Z3 = 𝑅5B,xy𝐶5B,xy + 𝑅5B,Z3𝐶5B,Z3	   	  	   	  	  	  	  	  	  	  	  	  	  	  	  (4.3) 

Equation (4.4) shows that with the change in the capacitance of the transducer 𝛥𝐶5B and 

fixed 𝑅5B the bridge output magnitude will change linearly with 𝛥𝐶5B. The bridge output 

differential phase with respect to source ideally remains unchanged with small fractional 

capacitive change 𝛥𝐶5B/𝐶5B. This bridge output transfer function behavior with capacitive 

change can be used in the practical experiment, to relate the collected voltage data at the bridge 

output to the transducer’s mere capacitive change with binding. 

                                                     |𝑉d − 𝑉]| =
����H�
���H

|���|

�w���E�H
� J�H

�
	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (4.4) 

	   ∠(𝑉d − 𝑉]) = −𝑎𝑡𝑎𝑛(𝜔𝑅5B𝐶5B) − ∠𝑉\J	   (4.5)	  

Considering (4.4), it can be observed that if ωW𝑅5BW 𝐶5BW ≪ 1, the sensitivity of the 

magnitude to the capacitance (slope) will be higher. Therefore, the makeup of the electrode 

and the solution conductivity directly affect the response sensitivity. The frequency of 

excitation and size of the electrode effective surface, in this case, should be picked so that 

	  𝑅5B ≪ 1/𝜔𝐶5B. 

Apart from the ideal case, unfortunately, perfect balancing, |𝑉d − 𝑉]| = 0, of the bridge 

in Fig. 4.3 with discrete resistors and capacitors in the balancing networks, is not always 

possible mainly due to the finite resolution of the tuning arrays (𝑅],xy, 𝑅],Z3, 𝐶],xy , and 𝐶],Z3) 

and signal real-time drift. If the signal change rate at the output of the bridge is much faster 

than the signal drift rate while balancing and actual binding, the drift effect will be minor on 
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the measurement resolution. But, limitations in the implementation of balancing networks will 

cause some level of initial imbalance in the bridge that leads to certain performance 

degradation in dynamic range and detection resolution. The required resolution for the 

balancing arrays and the bridge's initial imbalance threshold, however, can be decided for 

specific performance metrics by deriving the bridge transfer function in the presence of 

mismatches. This analysis will help to determine the resolution of the balancing arrays, and 

based on the absolute value of the interface impedance, give a rough estimate of the achievable 

detection resolution. 

4.4 Balancing and Mismatch Analysis  

 
Although the ideal transfer functions in (4.4) and (4.5), show a simple relationship 

between the response magnitude and phase and the fractional capacitance change of the 

transducer (�J�H
J�H

), in practice achieving a perfect ideal balance at the bridge output is not likely 

due to limited balancing array resolution and drift. The drift rate for the case of non-faradaic 

capacitive transducers can be controlled by applying a DC bias to the electrode that reduces 

the potential faradaic leakage currents from the electrode surface. Theoretically, if there is a 

zero voltage gradient between the electrode and solution, there will be no charge flow from the 

electrode surface toward the solution. Therefore, in the proposed setup, the solution is also 

biased at the same DC voltage value that the bio-functional electrode is excited for the drift 

control. With the proper drift control, the primary non-ideal bridge performance is caused by 

the balancing array limitations.  

Capacitive or resistive mismatches might affect the target measurement dynamic range, 

sensitivity and/or linearity, which will be shown in this section by deriving the non-ideal bridge 

transfer functions in the presence of a mismatch. But this non-ideal effect can be controlled by 



www.manaraa.com

37 

picking the array resolution in such a way that the initial imbalance does not affect the final 

performance. This means that mainly the quality of balancing will determine the final 

achievable detection resolution and dynamic range, using a bridge. Analyzing the response 

transfer functions with a non-perfect balanced bridge, in this case, is necessary for extracting 

the capacitance change data in the practical experiment.  

The bridge's initial capacitive or resistive mismatch will introduce a decrease in the 

dynamic range of the bridge output with the target capacitive change or non-linearity in lower 

detection limits, respectively. These effects are explored theoretically in the following. 

4.4.1 Capacitive Mismatch 

Eq. (4.6), (4.7) show the non-ideal bridge magnitude and phase transfer functions with 

merely a capacitance mismatch and all matched impedances while the electrode capacitances 

change i.e.  𝐶5B,xy = 𝐶5B,Z3 = 𝐶5B + 𝛥𝐶5B, 𝐶],xy = 𝐶5B + 𝛥𝐶, 𝐶],Z3 = 𝐶5B and 𝑅5B,xy =

𝑅5B,Z3 = 𝑅],xy = 𝑅],Z3 = 𝑅5B, 
�J�H
J�H

≪ 1. 

 |𝑉d − 𝑉]| ≈
����H�

𝛥𝐶
2 �

���H
|���|

�w���E�H
� J�H

�
	   (4.6) 

 ∠(𝑉d − 𝑉]) ≈ −𝑎𝑡𝑎𝑛(𝜔𝑅5B𝐶5B) − ∠𝑉𝐴𝐶	   (4.7)	  
 

Considering the balanced bridge except for a mismatch in capacitance 𝐶],xy,  by an 

amount ΔC,	  Fig. 4.4 shows the ideal case (black) and the transfer function of the bridge output 

magnitude in the presence of an initial capacitive mismatch. The phase transfer function is not 

shown here because it remains the same with a capacitive mismatch and not a function of the 

transducer's fractional capacitance change. The typical resistance and capacitance values 

utilized for this simulation are 𝐶5B = 300	  𝑛𝐹, 𝑅5B = 200	  𝛺 and 𝜔 = 2𝜋 × 1000	  𝑟𝑎𝑑/𝑠. The 

full scale (FS) fractional capacitance change for the simulation in Fig. 4.4 is considered �J�H
J�H

=
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1%, and nominal resolution lines (1, 2 and 3 bits) for an 8-bit dynamic range (DR) are drawn 

for clarity, the studied mismatch levels are �J
J�H
= ±1% . With the capacitive mismatch, the 

approximate magnitude of the bridge output in (4.6) still changes linearly with a horizontal 

shift. If the expected electrode capacitance change and the mismatch are in opposing directions 

(red), the dynamic range will shrink. The resolution lines are shown in Fig. 4.4 indicate that 

for the example of 1% full-scale transducer capacitance change, if the mismatch is on the same 

order of magnitude, for higher values of	  	  �J�H
J�H

, data would be lost due to saturation, despite the 

linear fashion of the response.  

By implementing the balancing capacitance array, in fine and coarse sets and binary 

waited so that the resolution of the fine capacitance array is equal or smaller than target 

 

Fig. 4.5 The series RC bridge output magnitude |𝑉d − 𝑉]|, vs fractional capacitance 
change �J�H

J�H
 , for an initially perfectly balanced bridge except for capacitive mismatch of 

�J
J�H
= 0,±1%, leads to shrinking of DR. Numerical simulations are plotted with lines on 

top of markers that plotted using the approximate equations. 
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detection resolution, the capacitive mismatch effect can be hindered. Important points should 

be considered for the capacitance array design. By utilizing NP0/C0G grade capacitors, the 

absolute value of the capacitances in the array will be more stable.  With the discrete 

implementation of the bridge using macro-electrodes, the minimum achievable capacitance 

resolution is on the order of several 𝑝𝐹. Therefore, this method is applicable for absolute 

electrode capacitance on the order of tens of 𝑛𝐹 and higher. While the condition 𝑅5B ≪

1/𝜔𝐶5Bleads to better sensitivity for transducer’s capacitive change, at the same time makes 

the initial balancing more sensitive to capacitive mismatches. 

4.4.2 Resistive Mismatch 

The capacitive mismatch mainly shifted the magnitude transfer function horizontally 

without any effect on the phase transfer function for small fractional change in transducer 

capacitance. Resistive mismatch, however, affects both the bridge magnitude and phase 

transfer functions. Transfer functions of the bridge output in the presence of resistive mismatch 

are shown in equations (4.8)-(4.9), where,𝐶5B,xy = 𝐶5B,Z3 = 𝐶5B + 𝛥𝐶5B, 𝐶],xy = 𝐶],Z3 = 𝐶5B 

and 𝑅],xy = 𝑅5B + 𝛥𝑅, 𝑅5B,xy = 𝑅5B,Z3 = 𝑅],Z3 = 𝑅5B , 
�J�H
J�H

≪ 1.	  

 |𝑉d − 𝑉]| ≈ �
�w���E�H

� J�H
�  (

���H
�

��H
� �

¡��¢���H
�

£ )

¤�w���E�H
� J�H

�  
�
��E��J�H

� ¥�E���E�H
� J�H

� (�E�¤E�H)¦
|𝑉\J|    (4.8) 

 ∠(𝑉d − 𝑉]) ≈ 𝑎𝑡𝑎𝑛 § �E�H�J�H.0./��EJ�H
��J�H J⁄ �H �0./�

�J�H
� E�H�E

¨ − 𝑎𝑡𝑎𝑛 § �J�H(¤E�H��E)
��J�H

� E�H(WE�H��E	  ).W
¨ − ∠𝑉\J  (4.9)	  

Fig. 4.5 shows the magnitude and phase of 𝑉d − 𝑉] , with a resistively mismatched 

bridge, the values of the components are the same as ones used for simulations in Fig. 4.4. The 

full scale (FS) fractional capacitance change for the simulation in Fig. 4.5 is considered �J�H
J�H

=

1%, and nominal resolution lines (1, 2 and 3 bits) for an 8-bit dynamic range (DR) are drawn 
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for clarity, the studied resistive mismatch levels are �E
E�H

= ±1%, for an initially perfect 

balanced bridge. It is apparent from (4.8) that resistive mismatch causes nonlinearity in the 

bridge output voltage magnitude. Looking at the normalized magnitude plot in Fig. 4.5, this 

non-linearity manifests itself mainly at lower detection limits (i.e., at smaller �J�H
J�H

 ). 

Nonlinearity gets stronger if the capacitive reactance of the electrode (i.e., |1/𝜔𝐶5B|) is not 

 

Fig. 4.6 The series RC bridge magnitude response |𝑉d − 𝑉]|, vs fractional capacitance 
change �J�H

J�H
 , for an initially perfectly balanced bridge except for resistive mismatch of 

�E
E�H

= 0, 1	  𝑎𝑛𝑑	  2%, leads to nonlinearity and worse detection resolution. Numerical 
simulations are plotted with lines on top of markers that plotted using the approximate 

equations. 

 

 
1 
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significantly larger than the solution resistance, 𝑅5B. As the magnitude data get non-linear with 

a resistive mismatch, the phase of the bridge output changes more linearly with Δ𝐶5B for lower 

detection limits as shown in Fig. 4.5 for the blue and red curves. 

This is specifically important to notice that at the range of capacitance change where 

magnitude goes non-linear, phase data can be used, leading to higher sensitivity and dynamic 

range. Additionally, with known expected fractional capacitance change and the required 

minimum resolution, minimum balancing resistance to keep the dynamic range at the linear 

portion of the magnitude plot can be determined using (4.8).  Given the absolute value of the 

solution resistance, such adjustment might not be feasible, specifically for cases when 𝑅5B is 

on the order of hundreds of Ω, where the ON-resistance of switches in the array can affect the 

balancing resolution. This challenge can be addressed by designing the resistive balancing 

array in fine- and coarse-tuning sets. In this way, the fine-tuning array has the minimum 

practical resolution, and the phase data is used along with the magnitude for the case of non-

linear response because of resistive mismatch. 

4.4.3 Balancing 

Given the analysis of non-ideal balancing effects on the response, the balancing method 

and final capacitance change extraction method needs to be thought of carefully. With the 

expected very small fractional capacitance change, the amplification readout interface 

following the bridge needs to provide a high differential gain to achieve a wide dynamic range 

on the quantifiable response. The fully differential scheme proposed for the design in this work 

can lead to the common-mode to differential conversion issue if the impedance matching for 

balancing is not carried out correctly. To avoid the common-mode to differential conversion 

problem, the overall impedance on the positive bridge end (𝑉d) should be matched to the total 
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impedance connected to the negative end (𝑉]), in other words, 𝑍],xy  should be matched to 

𝑍5B,xy  and 𝑍],Z3  to 𝑍5B,Z3, respectively.  

With the two-unknown impedance in the bridge legs, a two-step balancing algorithm 

where the bridge is balanced for the unknown electrode impedances one after the other is 

simpler (e.g., first 𝑅],Z3 and 	  𝐶],Z3 are set equal to 𝑅5B,Z3 and 	  𝐶5B,Z3, then 𝑅],xy  and 	  𝐶],xy  are 

set equal to 𝑅5B,xy  and 	  𝐶5B,xy). In the two-step method first, one of the electrodes is replaced 

with a known series RC impedance (𝑅4	  and 𝐶4) and after the bridge is balanced with the 

balancing algorithm shown in Fig. 4.6, then the second electrode is placed back, and the bridge 

is rebalanced using the same method. In this way, first 𝑅],Z3 and 	  𝐶],Z3 are set equal to 𝑅5B,Z3 

and 	  𝐶5B,Z3 then 𝑅],xy  and 	  𝐶],xy  are set equal to 𝑅5B,xy  and 	  𝐶5B,xy. 

 

Fig. 4.7 Balancing algorithm 
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4.4.4 Capacitance Data Extraction 

Once the bridge is balanced with the algorithm shown in Fig. 4.6, the common mode 

to differential conversion effect on the bridge response will be removed. A simple and accurate 

algebraic relationship using the balanced bridge transfer functions, the changing capacitance 

and possible change in resistance can be extracted from the collected 𝑉d − 𝑉]  magnitude and 

phase data. The algebraic operations can be easily carried out by the same microcontroller that 

performs the balancing and sine fitting tasks. Assuming the bridge is initially balanced with 

the known impedances  𝑍],xy = 𝑍5B,xy and 𝑍],Z3 = 𝑍5B,Z3 , and considering any change in the 

transducer impedances will be represented by an effective resistance and capacitance change 

(𝛥𝑅5B and 𝛥𝐶5B) on one of the electrodes, the approximate transfer functions (4.10) and (4.11) 

can be derived. 

 ��ª.�«
���

� |1 + ¬«,L
¬«,®¯

| ≈ J«,®¯
J«,L

�

�«,L
� ¡�

¢«,L
� �E�H

� � °
¢«,L
� �«,L

� �J�H
�

(w�
E«,®¯

E«,L± )�J«,®¯
� ���w E«,L

�± §w�
�«,®¯
�«,L

¨
� (4.10) 

         𝑡𝑎𝑛	  [∠(𝑉d − 𝑉]) − ∠𝑉\J − ∠§
¬«,®¯

¬«,®¯�¬«,L
¨ − 𝑎𝑡𝑎𝑛 (

§w�
�«,®¯
�«,L

¨

J«,®¯��E«,®¯�E«,L 
)] 	  ≈ �J�H

J«,L
� ��E�H

   (4.11) 

 (4.10) and (4.11) are drawn with the approximations considering �J�H
J�H

≪ 1 and �E�H
E�H

≪ 1. 

 All the parameters except 𝛥𝑅5B and 𝛥𝐶5B are known in (4.10) and (4.11), by replacing 

𝛥𝑅5B with its equivalent peer which is a linear function of 𝛥𝐶5B, using the phase data from 

(4.11), into (4.10), 𝛥𝐶5B can be easily extracted. Any initial imbalance level in the bridge in 

this way will cumulatively appear on the computed 𝛥𝑅5B and 𝛥𝐶5B, therefore by characterizing 

the bridge's initial balance point, this error can be calibrated out from the extracted values for 

capacitance and resistance. Another similar approach is to use the response of the real (Re) and 

imaginary (Im) parts to derive algebraic linear relationships directly with 𝛥𝑅5B and 𝛥𝐶5B, shown 
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in (4.12) and (4.13), using the same approximations. Any initial imbalance level in the bridge 

in this way will cumulatively appear on the computed 𝛥𝑅5B and 𝛥𝐶5B, therefore by 

characterizing the bridge's initial balance point, this error can be calibrated out from the 

extracted values for capacitance and resistance. The capacitive and resistive changes on the 

electrode are linearly related to each other as apparent in (4.12)-(4.13), therefore using these 

equations guarantee the linearity of the response data extraction. 

          Δ𝑅5B ≈ 𝑅𝑒 §�ª.�«
���

.
¬«,®¯�¬«,L

¬«,®¯
¨𝑅5B,Z3 §1 +

E«,®¯
E«,L

¨ + 𝐼𝑚§�ª.�«
���

.
¬«,®¯�¬«,L

¬«,®¯
¨ w
�J«,®¯

§1 +
J«,®¯
J«,L

¨,         (4.12)  

  Δ𝐶5B ≈ −𝑅𝑒 §�ª.�«
���

.
¬«,®¯�¬«,L

¬«,®¯
¨𝐶5B,Z3 §1 +

J«,®¯
J«,L

¨ + 𝐼𝑚§�ª.�«
���

.
¬«,®¯�¬«,L

¬«,®¯
¨𝜔𝐶5B,Z3W 𝑅5B,Z3 §1 +

E«,®¯
E«,L

¨.(4.13)  

4.5 Series RC Bridge Implementation for 8-bit Sensing Resolution 

The design methodology and bridge structure discussed in Section 4.4 can be utilized 

to implement a hand-held biosensor for specific electrochemical capacitive sensing 

applications with very small (<1%) full-scale fractional capacitance change at the transducers. 

An experimental setup is designed for verification of the theory presented in the previous 

sections, with the target of an 8-bit sensing resolution within 1% full-scale dynamic range for 

the fractional solution-electrode capacitance change. Given the bridge structure and the 

interface model in Fig. 4.3, size and geometry of the effective interface surface and the solution 

ion content, make-up the interface impedance values at the frequency of measurement. For the 

case of non-faradaic measurement with the bridge structure, two electrodes (one 

working/functionalized and the other one counter) on each transducer chip is sufficient.  

The capacitive transducer chips that are explained in Section 3.3 are measured to find 

the typical value of the electrode-solution interface impedance in the utilized model. After 

characterization with the single frequency of excitation set to 1	  𝑘𝐻𝑧 (frequency at which the 

sensing element that is the surface capacitance, is dominant) and utilizing PBS 10mM, pH 7.2 
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as the solution, the equivalent series interface capacitance and solution resistance are typically 

around 300	  𝑛𝐹 and 200	  𝛺, respectively. The parallel leakage resistance 𝑅B5dn , is also 

characterized to be several hundred 𝑘𝛺. 

4.5.1 Balancing Arrays 

With the knowledge of the typical value for the transducer interface model, and a target 

detection goal of 8-bit resolution for a 1% overall fractional capacitance change, the bridge 

balancing networks can be designed. Digitally tunable balancing capacitor/resistor arrays 

𝐶],xy, 𝑅],xy and 𝐶],Z3, 𝑅],Z3 are each designed in fine and coarse sets for the goal of fine 

balancing. Shown in Fig. 4.7(a) on the left, and Fig. 4.7(b), is the coarse digitally tunable 

capacitance (𝐶𝑑𝐶1 − 𝐶𝑑𝐶8) array that is binary weighted with an 8-bit resolution and 1	  𝑛𝐹 

LSB value. In this way, if the target electrode capacitance is occasionally out of the maximum 

 

Fig. 4.8 (a) Structure of course and fine capacitance array (b) capacitance vs. 8bit control 
code course, (c) fine capacitance array 
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expected range, increasing the capacitance attached to the MSB will shift the larger half of the 

array by the amount added, and the overall range can be increased without the need for 

adjusting the whole array. The values of the capacitances attached to each bit of the coarse 

capacitance array are picked based on the possible commercial values so that no hundreds 

value is missing. The fine-tuning capacitance array Fig. 4.7(a), on the right (𝐶𝑑𝐹1 − 𝐶𝑑𝐹8),, 

and Fig. 4.7(c), on the right, is formed in 8-bit structure with minimum capacitance value of 

4	  𝑝𝐹	  the fine array is adjusted with commercially possible capacitance values so that no tenths 

capacitor values are missing and maximum achievable capacitance value on the fine array in 

this way is 1003	  𝑝𝐹. 

The coarse-tuning resistance array, shown in Fig. 4.8(a), left, has eight fixed 𝑅𝑑𝐶 =

100	  𝛺	   resistors that add up linearly to the overall value on the fine resistance array and shift 

the total resistance value by 100	  𝛺 at a time. The fine balancing resistance array Fig. 4.8(a), 

on the right, and Fig. 4.8(b) is a binary-weighted 8-bit array, the values of the resistors in this 

 

Fig. 4.9 (a) Structure of course and fine resistance array, (b) resistance vs. 8bit control 
code for fine resistance array 
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array (𝑅𝑑𝐹1 − 𝑅𝑑𝐹8) is adjusted with respect to the commercial values and the ON resistance 

of the utilized switches (ADG811 from Analog device, roughly 0.5	  𝛺) so that the resolution of 

the array is approximately 0.5	  𝛺 and the final maximum resistance at the fine array is 114	  𝛺. 

The characterization plots of the capacitance coarse and fine arrays with the available 

commercial components are shown in Fig. 4.7(b)-(c). Fig. 4.8(b) shows the characterization 

plot for the fine resistive arrays. These characterizations show that component values are 

adjusted in such a way that there are no missing codes corresponding to target values. 

The offset resistance of the fine array caused by all the switches off state is 

approximately 3.5	  𝛺. This offset is compensated at the first resistance of the coarse resistance 

array changed from 100	  𝛺 to 96.5	  𝛺. The digital AC balancing is performed by a 

microcontroller (TI-MSP432P401R). Each of the 8 balancing arrays is connected to an 8-bit 

latch (CY74FCT2573TSOC form TI) to control the array switches.  The 8-bit array data is 

 

Fig. 4.10 Block diagram of digitally controlled balancing network, the MCU sends the 8-
bit code to control the array switches and selects one  array out of 8 at a time with the 3-

bit enable control code (𝐴W𝐴w𝐴0)  
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written to a mutual data bus connected to the latch inputs, after a 3 × 8 decoder (CD74HC238 

from TI) enables the target latch, data is transferred from the target latch output to the 

corresponding array switches. DC balancing resistors, 𝑅^, are set to 50	  𝑘Ω which is more than 

ten times greater than typical electrode absolute impedance magnitude,	  730.5	  Ω, at the 

frequency of 1	  𝑘𝐻𝑧 and still more than ten times smaller than the corresponding 𝑅B5dn . A 

manually tunable 1	  𝑘𝛺 resistance is also inserted in the DC path for one time fine adjustment 

for any mismatch among the DC balancing resistors. The block diagram for the explained 

bridge design and the experimental setup is shown in Fig. 4.9.  

With a 50	  𝑚𝑉Yi6  AC excitation and 200	  𝑚𝑉 DC bias, an amplification and filtering 

board is costume designed and interfaced with the bridge to amplify the tiny differential 

response, 𝑉d − 𝑉] , to the full-scale voltage of the utilized ADC. The microcontroller’s (MCU) 

first task is balancing the bridge and then carrying out dual-channel 3-parameter sine fitting on 

the real-time acquired data. Therefore, the final real-time data of the system in Fig. 4.9 would 

be the amplified bridge output amplitude (response amplitude) and response differential phase 

with respect to the AC excitation. 

4.5.2 Drift Control 

As mentioned earlier in real-time measurements for non-faradaic capacitive sensing, 

the signal drift is one of the major obstacles against fast and accurate data collection. The actual 

response variation caused by binding might get lost due to the random drift that is faster. 

Specifically, with the bridge concept, a largely drifting response makes it very difficult or 

impossible to balance the bridge. Thus, the drift rate of the response should be controlled in 

such a way that the balancing speed and expected response variation caused by binding is much 

higher than the drift rate.  
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Other than random events happening at the electrode surface like the displacement of 

the thiol chains, one major reason for the drifting solution-electrode interface capacitance is 

the faradaic leakage current flow from the un-blocked surface pin-holes [42]. Theoretically, by 

biasing the solution and electrode at the same DC potential, the flow of the faradaic currents 

should go to zero. A general block diagram showing the setup for interfacing the differential 

series RC bridge structure with an interface system is provided in Fig. 4.10. The differential 

placement of the electrodes along with the working and counter electrode placement and 

solution bias also is demonstrated in the bridge section of Fig. 4.10. By biasing the solution 

with an external Ag/AgCl reference electrode, the drift rate can be reduced. Fig. 4.11 shows 

the results of an experiment to validate the explained drift control strategy using the setup 

shown in Fig. 4.10. 

The working electrodes connected to the bridge ends shown in Fig. 4.10 are biased with 

a 60	  𝑚𝑉 DC voltage. The experiment is performed once without a solution bias and once with 

solution biased using the external Ag/AgCl reference connected to a 60	  𝑚𝑉 DC voltage. The 

bridge is balanced in both cases, and the output response magnitude is recorded for 15 minutes, 

Fig. 4.11 shows that biasing the solution reduces the drift rate by approximately 7.3 times. 

Considering an ADC full scale of 1.2	  𝑉, the drift rate controlled by external solution bias is 

about 11.4	  𝑚𝑉/𝑚𝑖𝑛, if the binding rate and the balancing speed are faster than this value, then 

drifting will not cause significant problems for experimental validations. 
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4.6 Conclusions 

 The differential bridge structure with a series RC model for the solution-electrode 

interface improves the sensing performance before amplification readout at a low cost. With a 

proper bridge model, the configurable DC biasing for the electrodes and simultaneous but 

independent AC/DC balancing can be achieved. A differential bridge structure with two 

functional sensors is effective in reducing the non-random common-mode effects of noise, drift 

and non-specific binding. The voltage response signal can be related to the capacitance change 

with algebraic equation and without the need for complicated fitting algorithms, which is an 

advantage for faster processing of acquired data in real-time. Very common problem with 

many bridges that might lead to some response non-linearity or less sensitivity is the initial 

imbalance level of the bridge. With bridge characterized transfer function the bridge initial 

imbalance reason can be identified, calibrated and behavior with target capacitance change can 

be predicted. 

 

Fig. 4.12 Results of an experiment to validate the explained drift control strategy 
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Parameters like dynamic range, detection resolution and linearity are among the most 

important biosensor response characteristics that are directly related to bridge structure and 

balance quality. We propose a differential bridge model for real-time single frequency 

solution-electrode interfacial capacitive sensing. The impedances in the bridge legs are 

modeled in such a way that independent AC and DC balancing and configurable DC bias for 

the transducers are feasible.  

A complete characterization of the bridge output differential magnitude and phase 

transfer functions is carried out in this chapter to observe the ideal bridge output response with 

target capacitance change. Then, with the goal of achieving an 8-bit detection resolution, the 

effect of initial bridge imbalance levels and its relevance to the resolution of balancing network 

arrays are studied. Design trade-offs among the absolute value of interface model elements, 

the amplification gain, the required minimum discrete capacitance or resistance in the 

balancing network, to achieve certain dynamic range and resolution are discussed. The proper 

electrode placement in the bridge legs and a suitable bridge balancing algorithm are 

investigated. In the design process, the balancing algorithm is designed so that a simple and 

low-cost microcontroller can carry out the balancing task in addition to data acquisition/fitting. 

Given the complete analysis, a bridge structure is designed and implemented with a target of 

8-bit resolution for the sensing of 1% full-scale fractional capacitance change. 

After the bridge implementation, the electrode placement and bias method are 

experimentally tested to find an effective way to control the real-time output drift. Design and 

implementation of the suitable and sensitive amplification and filtering readout along with the 

data acquisition and processing unit to interface with the designed bridge are discussed in 

Chapters 5 and 6.  
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  AMPLIFICATION AND FILTERING INTERFACE FOR 
CAPACITIVE BRIDGE TRANSDUCTION  

5.1 Introduction 

For most diagnostic and monitoring applications including capacitive sensing of 

MCLR, the detection target concentrations of interest are generally small, ranging from 𝑛𝑔/𝐿 

to 𝜇𝑔/𝐿 that gives rise to a total change in impedance of often only a few percent over the 

entire full range of detection. To complicate matters, for development of a field-deployable 

read-out board compatible with interfacial capacitive transducers, avoiding physical damage 

of the functional layer of the transducer and also nonlinear distortion effect on the response, 

require that the magnitude of the applied AC excitation remain small (typically < 50	  𝑚𝑉) [21].  

Let’s consider that the series RC bridge structure shown in Fig. 4.3 with the transducers 

inserted. If the bridge impedances are 𝑍],xy, 𝑍],Z3 , 𝑍5B,xy  and 𝑍5B,Z3 and the change in the 

transducers impedances are considered as Δ𝑍5B,xy and  Δ𝑍5B,Z3, where �¬�H,®¯
¬�H,®¯

+ �¬�H,L
¬�H,L

≈ 1%, 

the differential output voltage can be found using the following equations. 

 𝑉d − 𝑉] =
�¬�H,®¯�∆¬�H,®¯ �¬�H,L�∆¬�H,L .¬«,®¯¬«,L
�¬�H,®¯�∆¬�H,®¯�¬«,L �¬«,®¯�¬�H,L�∆¬�H,L 

𝑉\J   

≈ § ¬¹º,»¼∆¬¹º,½¾
�¬¹º,½¾�∆¬¹º,½¾�¬¿,»¼ �¬¿,½¾�¬¹º,»¼�∆¬¹º,»¼ 

+
¬¹º,½¾∆¬¹º,»¼

�¬¹º,½¾�∆¬¹º,½¾�¬¿,»¼ �¬¿,½¾�¬¹º,»¼�∆¬¹º,»¼ 
¨ 𝑉\J.	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  (5.1) 

	  

If  ¬�H,®¯
¬�H,®¯�¬«,L

= ¬«,®¯
¬«,®¯�¬�H,L

= 𝛼 (0 < 𝛼 < 1, 𝑟𝑒𝑎𝑙 ) and 𝑍5B,xy ≫ 𝛼 × ∆𝑍5B,xy, 

𝑍5B,Z3 ≫ (1 − 𝛼) × ∆𝑍5B,Z3: 

 𝑉d − 𝑉] ≈ Â w

Ã
Ä�H,®¯
Å∆Ä�H,®¯

�wÆ§ °
°�Å�

∆Ä�H,L
Ä�H,L

¨
+ w

§
Ä�H,L

(°�Å)∆Ä�H,L
�w¨Ã°Å�

∆Ä�H,®¯
Ä�H,®¯

Æ
Ç𝑉\J. (5.2) 

 𝑉d − 𝑉] ≈ 𝛼(1 − 𝛼) §∆¬�H,®¯
¬�H,®¯

+ ∆¬�H,L
¬�H,L

¨ 𝑉\J .           (5.3) 
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A typical excitation sine signal for this application has an AC amplitude on the order 

of 1 − 100	  𝑚𝑉. Assuming the case where both fractional changes in (5.3) are less than 1% 

and the bridge is balanced perfectly, i.e. 𝛼 = 1/2, the maximum change in the amplitude of 

the bridge output will be less than 1	  𝑚𝑉. Now with the target sensor resolution set to a modest 

8-bits value, the LSB of the response to be detected will be several microvolts. An AC signal 

of 50	  𝑚𝑉Yi6  is utilized in our current design, therefore, with 𝛼 = 1/2, the maximum change 

at the bridge output will be 0.35	  𝑚𝑉, if the target resolution for the sensor is 8-bits, then the 

LSB of the response will be equal to, 1.367	  𝜇𝑉. Due to these small changes, extreme care must 

be taken in the design and implementation of the sensor interface circuit. 

Some small, inexpensive, and low-power sensor interface circuits are proposed in the past 

like the ones in [50-52]. These systems are specifically designed for capacitive sensing and 

accelerometer applications. Other than AC excitation that is different for interfacial capacitance 

sensing, these systems also do not have the transducer DC bias requirement. Therefore, the 

performance of these types of interface circuits for real-time operation with interfacial 

capacitive transducers is not validated. On the other hand, if a discrete implementation is 

required, unfortunately, some factors limit the performance of field-deployable sensor interface 

circuits. For example, the frequency response analyzer introduced in [16], which is among the 

famous AC interface impedance measurement methods, may lead to unwanted drifting and 

sensitivity degradation when implemented with discrete blocks such as multipliers and phase 

shifters.  

Typical precision opamps that would be used in this application have input-referred 

noise voltages that are on the order of tens of 𝑛𝑉 √𝐻𝑧⁄ .  To maintain a practical input signal-

to-noise ratio (SNR) greater than 1, with microvolt-level transducer output voltages, the 
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effective noise bandwidth of the sensor interface circuit could be limited to only a few tens of 

hertz. Moreover, a voltage gain of approximately 60–80 dB will be required to make effective 

use of the ADC. Such extreme amplification and filtering require highly accurate component 

matching, extensive shielding, and careful circuit design. Considering the abovementioned 

challenges, differential measurement technique is used here to reduce the effects of common-

mode noise, drift, and temperature variation.  

A comprehensive study of the design tradeoffs between overall sensor system 

complexity and performance in low-cost (< $10), real-time electrode-solution interfacial 

capacitance sensing applications, particularly with small fractional detection capacitance 

change signals (< 1%) is given in this chapter. It is shown here that, at the same time, the 

careful design of the two-channel digital acquisition and processing (sine fitting) utilizing a 

single microcontroller can relax the requirements specifically for the amplification and filtering 

unit. A complete theoretical design procedure along with a practical discrete implementation 

example is presented here targeting real-time, low-cost, and field-deployable capacitive 

biosensor with less than 1% full-scale change in the transducer output voltage and 8-bit 

characteristic change resolution. The detailed structure of the proposed interface architecture 

suitable for bridge transduction is shown in Fig. 5.1 
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In the proposed system of Fig. 5.1 bridge transducing, amplification, filtering, and dual-

channel digital data acquisition is done fully differential mainly to achieve better noise and 

common mode interference cancellation and expand the overall sensor dynamic range. To 

maintain symmetry along all signal paths, fully differential amplification and filtering with a 

fixed gain is designed using differential precision opamps (LTC6363) instead of single-ended 

instrumentation amplifiers. The total required gain for 8-bit detection resolution is distributed 

among three stages, one mainly amplification and two amplification and filtering. Multiple 

feedback active band-pass filter architecture is adopted both for its lower cost, fully differential 

implementation and flexibility for tuning parameters like gain, 𝐴[2B45Y , bandwidth, 𝐵𝑊, and 

center frequency, 𝑓a5345Y . If  𝑅Ìd = 𝑅Ì] = 𝑅Ì, 𝑅`d = 𝑅`] = 𝑅`, for each filter gain, bandwidth 

and center frequency are set by (5.4)-(5.6).  

 𝐴[2B45Y =
EÍ
WEÎ
.	  	   (5.4)

	   	  
	   𝐵𝑊 = w

WÏJ«EÍ
.	  	   (5.5)	  

	   𝑓a5345Y =
w

WÏJ«Ð(EÎ||E«)EÍ
.  (5.6) 

Considering the required large differential amplification gain and detection resolution, 

the design of the readout interface for the bridge output requires careful analysis based on 

several important parameters such as overall noise and common-mode to differential 

conversion. The effective noise bandwidth and CMRR mainly affect the best possible 

minimum detection limit, while common-mode to differential conversion due to mismatches 

and imbalance leads to degraded sensitivity and nonlinearity. The abovementioned issues are 

discussed in the design of the amplification and filtering unit in this chapter. 

 Dual-channel differential data acquisition, sin fitting, and bridge balancing are all done 

employing single MCU. Response signal frequency known a priori makes the sine fitting 
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algorithm simpler. However, to achieve the target 8-bit resolution with simpler real-time 

processing, the most important parameters to consider while developing the fitting algorithm 

are SNR, number of samples taken per cycle and sensitivity to potential excitation frequency 

shifts, the design tradeoffs for coherent real-time 3 parameter sine fitting are also given in the 

data acquisition and processing design in Chapter 6. 

5.2 Amplification and Filtering Design 

The primary role of the single-frequency amplification and filtering unit shown in Fig. 

5.1, is to amplify the detection signal and filter the unwanted out of band interference. On the 

other hand, the amplification unit is interfaced to the data acquisition unit for real-time 

processing. Thus, design parameters like gain and specifications like CMRR, output, and input 

common-mode voltage, filter bandwidth, etc. are set both by the bridge response range, 

resolution, and ADC full-scale range.  

CMRR or the amplification and filtering interface’s ability to reject the common-mode 

bridge output voltage (initial balance case) and amplify the differential voltage change at the 

bridge output (case of impedance change with detection) is one of the most critical design 

parameters. Failing to reject the common-mode at the bridge output considering the high 

required differential gain will lead to unpleasant common-mode to differential conversion that 

not only gives rise to false detection signal but also limits the dynamic range. Additionally, 

common-mode to differential conversion will affect the bridge balance and make it more 

challenging. 

The ADC’s full-scale range, 𝐴ÌX, determines the total required amplification gain, the 

higher 𝐴ÌX, the more amplification required. The typical full-scale ADC voltages available are 

on the order of (1 − 5	  𝑉), three-stage amplification, and filtering interface is proposed here to 
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provide the total differential gain in the order of 70 − 80	  dB. To have an estimation of how 

much common-mode rejection is required, consider the case with the bridge initially balanced 

in the middle so that 𝛼 = 1/2 and |𝑉d| = |𝑉]| equal to tens of millivolts and if the differential 

LSB change at the bridge output, |(𝑉d − 𝑉])ÒXÓ|, is only several microvolts. These values will 

be amplified by the common-mode to differential gain 𝐴Ô,JÕ^2[[ , and interface differential 

gain, 𝐴Ô,^2[[ , respectively. To maintain the 8-bit resolution capability in this case, the 

following criteria should be met: 

 
\Ö,×KØØ.|(�ª.�«)ÙÚÛ|
\Ö,�Ü×KØØ.|�ª«,�Ü|

> 2.  (5.7) 

For the interface utilized in our current design, 𝐴ÌX = 1.2	  𝑉, with the maximum 

differential voltage at the bridge output equal to 0.35	  𝑚𝑉, a gain of 3428.6	  𝑉/𝑉 or 70.7	  dB is 

required to map the full-scale change at the bridge output to the full scale at the ADC. The 

abovementioned criteria set the minimum for the 𝐶𝑀𝑅𝑅ÞA4dB =
\Ö,×KØØ

\Ö,�Ü×KØØ
= 94.19	  𝑑𝐵 which 

with 𝐴Ô,^2[[ = 70.7	  𝑑𝐵, requires the 𝐴Ô,JÕ^2[[  to be at least −23.49	  𝑑𝐵.  

Other than common-mode to differential conversion, noise, is one other critical issue, 

degrading the lower detection limit and shrinking the dynamic range. However, proper filtering 

of the response signal will greatly improve the signal to noise ratio at the ADC input. Various 

sources causing common mode to differential conversion and SNR degradation at the output 

of interface before ADC, are analyzed in the following. In light of this analysis, parameters 

like gain of each stage, effective noise bandwidth (ENB) and matching order can be determined 

and based on the best achievable SNR at the board output, sin fitting algorithm in the data 

acquisition unit can be picked and designed. 
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5.2.1 Common-Mode to Differential Conversion 

Typical fully differential amplifiers for precision measurements provide relatively high 

CMRR values of around 100	  𝑑𝐵. However, when configured as a differential amplification 

stage, as shown in Fig. 5.1 the total CMRR of the stage,	  𝐶𝑀𝑅𝑅X4dß5 , is determined not only 

by the CMRR of the opamp, 𝐶𝑀𝑅𝑅àydiy , but also the matching between the two symmetrical 

feedback ratios 𝛽d and 𝛽], which are defined as follows: 

 𝛽] =
EÍ«°

EÍ«°�EÎ«°
 ,   	  𝛽d =

EÍª°
EÍª°�EÎª°

. (5.8) 

If 𝛽] = 𝛽 + �â
W

 and 𝛽d = 𝛽 − �â
W

, therefore, 𝛽] − 𝛽d = 	  Δ𝛽 and 𝛽] + 𝛽d = 	  2β. 

𝐶𝑀𝑅𝑅X4dß5  is derived as [53]: 

 𝐶𝑀𝑅𝑅X4dß5 ≈
w

°
�Ü¢¢ä¯ªå¯

��ææ
.  (5.9) 

Fig. 5.2 shows the percent degradation in 𝐶𝑀𝑅𝑅X4dß5/𝐶𝑀𝑅𝑅àydiy  the ratio for 

various 𝐶𝑀𝑅𝑅àydiy , versus the percent feedback matching ratio. As expected from (5.9), for 

higher values of 𝐶𝑀𝑅𝑅àydiy , a tighter feedback ratio matching is required. Now given a 

typical amount of  𝐶𝑀𝑅𝑅àydiy = 100	  𝑑𝐵,  feedback matching ratios better than 0.001% and 

0.003% are required to obtain 𝐶𝑀𝑅𝑅X4dß5  of 50	  𝑑𝐵 and 25	  𝑑𝐵 respectively.  

With discrete implementation, one main challenge for feedback ratio matching is the 

component tolerances. For a given stage with a differential voltage gain, 𝐴Ô,^^, 𝑅Ì] =

𝐴Ô,^^𝑅`], if the resistance, 𝑅’s tolerance Δ𝑅, is included as following: 

	   𝑅`] = 𝑅 ± 𝛥𝑅, 𝑅Ì] = 𝐴Ô,^^𝑅 ± 𝛥𝑅.	   (5.10)	  

Feedback ratio matching is related to the component tolerance using the following 

derivations: 
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 �â
â
= â«.âª

â
=

�Ö,××¢±�¢
(�Ö,××ç°)¢±��¢

.
�Ö,××¢±�¢

(�Ö,××ç°)¢±��¢
�Ö,××¢±�¢

(�Ö,××ç°)¢±��¢

=
±W�¢¢

(\Ö,××�w)±W
�¢
¢

.	  	   (5.11)	  

For �â
â
≪ 1, 

	   ± �E
E
= �â

â
\Ö,××�w)

W(w.	  �ææ )
≈ �â

â
(\Ö,××�w)

W
.	   (5.12) 

The plots of required percent component tolerance for various stage gain, 𝐴Ô,^^ , versus 

percent feedback ratio mismatch is shown in Fig. 5.3. Lower component tolerance is required 

to get the same feedback matching ratio as the stage gain gets higher.  

 Other than the amplification stage symmetrical feedback ratio mismatch, another 

important source of common-mode to differential conversion, is the misbalanced bridge 

interfacing the amplification stage. In other words, misbalance of equivalent impedances 

 
Fig. 5.2 Percent degradation in CMRR of each stage over the Opamp CMRR 

(𝐶𝑀𝑅𝑅X4dß5/𝐶𝑀𝑅𝑅àydiy) ratio, versus the percent feedback matching ratio for various 
𝐶𝑀𝑅𝑅àydiy  
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connecting to nodes 𝑉d  and 𝑉] , as shown in Fig. 5.1 also translates into a feedback ratio 

mismatch and introduces common-mode to differential conversion. To avoid this effect, the 

balancing of the bridge should be done based on the following criteria: 

 𝑍],xy	  è𝑍5B,Z3 = 𝑍5B,xy	  è𝑍],Z3.  (5.13) 

Also, to balance the Whetstone based bridge of Fig. 5.1 the nulling condition is: 

 𝑍],xy𝑍],Z3 = 𝑍5B,xy𝑍5B,Z3  (5.14) 

From (5.13) and (5.14) it can be inferred that balancing the bridge by setting 𝑍�,éê =

Zìí,éê and Zìí,îï = Z�,îï, sets 𝑉d − 𝑉] = 0, while common-mode to differential conversion is 

avoided. Note that although setting 𝑍�,éê = Zìí,îï and Zìí,éê = Z�,îï, meets bridge output null 

condition but depending on the functional electrodes mismatch, strong common mode to 

differential conversion effect might take place. 

 

Fig. 5.3 percent component tolerance for various stage differential gain, 𝐴Ô,^^, versus 
percent feedback ratio mismatch 
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The bridge, differential amplification, and dual-stage filtering are cascaded stages in 

the interface readout. In [54] the contribution of each stage, 𝐶𝑀𝑅𝑅X4dß5 2, on the total CMRR, 

𝐶𝑀𝑅𝑅ÞA4dB , of a cascade of 3 differential stages is investigated and derived in (5.15). Where 

𝐴Ô,^^K , and 𝐴Ô,aaK are the differential to differential and common-mode to common-mode gains 

of the ith stage, respectively.  

 w
JÕEEðGMªH

≈ w
JÕEEÚMªñ�°

+ w
�Ö,××�
�Ö,òò�

JÕEEÚªMñ��
+ w

�Ö,××�
�Ö,òò�

	  
�Ö,××ó
�Ö,òòó

JÕEEÚªMñ�ó
.  (5.15) 

The output common-mode (DC) voltage,	  𝑉àJÕ , of the fully differential amplifiers, used 

in this design, is set at 𝐴ÌX/2, to cover the full ADC dynamic range equally. For this purpose, 

precision opamps with internal common-mode feedback are utilized that set the output 

common-mode voltage to a specific value defined by the user. This external voltage is supplied 

from a voltage regulator to be more stable and properly bypassed with a capacitor to reduce 

the potential associated noise [55]. However, if the specified 𝑉àJÕ , is not at the mid rail of the 

precision differential opamp supply voltages, the external voltage source should have enough 

current drive capability to supply the extra required drive current. With the internal common-

mode feedback utilized, 𝐴Ô,aaK, is equal to 1	  𝑉/𝑉. Thus, if the two filtering stages are identical, 

with same gains and characteristics, the effect of the CMRR of the first stage on the 𝐶𝑀𝑅𝑅ÞA4dB  

is dominant compared to higher stages. Therefore, bridge balancing and component matching 

on the first amplification stage has the most significant effect on the total CMRR and common-

mode to differential conversion effect. 

5.2.2 Noise Analysis  

Electronic circuits and components in the read-out interface, as well as the bridge itself 

including the electrodes, are contributing with different degrees to the overall noise at the 

amplification and filtering output before the ADC. The narrow bandpass filtering is proposed 
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in the system shown in Fig. 5.1 to improve the SNR at the ADC input, the two identical multiple 

feedback [56] bandpass filters are mainly cascaded to obtain higher order (4th) and also even 

gain distribution. The effective noise bandwidth (ENB) of the cascaded filter stage is the main 

parameter affecting the final SNR, and more importantly, the minimum detection limit. The 

filter center frequency, 𝑓23 , is determined by application and set to the typical value 1	  𝑘𝐻𝑧 in 

this paper. Noise analysis of the bridge and amplification interface however, is required to be 

able to define the necessary ENB for an 8-bit detection resolution. 

Consider the capacitive bridge with noise sources included shown in Fig. 5.4(a) The 

functional electrodes in this study are assumed as planar ones for non-faradaic measurement 

(no charge transfer across the interface). The electrode-solution interface is modeled as a series 

RC, the resistive part (𝑅5B,xyand 𝑅5B,Z3) are solution resistance, and the capacitive part 

 
(a)                                                        (b) 

Fig. 5.4 . Noise model for (a) capacitive series RC bridge and (b) fully differential 
amplifier incorporating the resistance noise sources and amplifier input voltage and 

current noise 
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(𝐶5B,xy	  and 𝐶5B,Z3) are the interface capacitance. The electrodes makeup and solution 

conductivity are set so that at the frequency of operation,	  𝜔23 = 2𝜋𝑓23 , 𝑅5B < |1/𝑗𝐶5B𝜔23|	  →

𝑅5B𝐶5B𝜔23 < 1, because the capacitance of the functional layer mainly changes with binding 

and dominant capacitive part leads to higher sensitivity. Gesteland et al. show in [57] that noise 

of a metal microelectrode can be modeled as thermal noise of resistance in a narrow band of 

frequency, where the corresponding resistance is real part of the electrode-solution interface 

impedance. In the bridge noise model shown in Fig. 5.4(a) 𝑅],xy, 𝐶],xy, 𝑅],Z3	  and 𝐶],Z3 are 

RC balancing networks made with arrays of digitally controlled capacitors and resistors to 

balance the bridge for AC. 𝑅^s are DC balancing resistive paths that provide a stable DC bias 

to the electrodes and equal DC voltage at 𝑉d  and 𝑉] .  

The value of the DC balancing resistors are set much larger than the magnitude of the 

electrode impedance not to load the electrodes and decrease sensitivity, therefore, knowing 

that 𝑅5BW 𝐶5BW 𝜔23W ≪ 1 leads to 𝑅^W𝐶5BW 𝜔23W ≫ 1. The associated noise sources with the electrodes 

and balancing resistors are in series with the corresponding resistance in Fig. 5.4(a), and are 

all representing thermal noise model for the resistance with units of 	  𝑉/√𝐻𝑧: 

 𝑉3E = √4𝑘𝑇𝑅.	   	  (5.16) 

𝑘 is the Boltzmann’s constant, 𝑇 is the absolute temperature, and 𝑅 is the corresponding 

resistance value. The noise model for a fully differential opamp with the associated 

amplification feedback resistors [58] is shown in Fig. 5.4(b) Again the resistors have the 

thermal noise voltage model in series and the noise sources 𝐸23 , 𝐼23�and 𝐼23.are the opamp 

input referred voltage and current noises, respectively. If the excitation source, 𝑉\J , is assumed 

to be noiseless, and the output common mode voltage setting external source is properly 
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filtered, the total rms noise at the output of the amplification and filtering board,	  𝐸3,ÞA4dB÷÷÷÷÷÷÷÷÷÷, is 

obtained from (5.17). 

 𝐸3,ÞA4dB÷÷÷÷÷÷÷÷÷÷ = ø∫
(𝐺ú°

W 𝐺ú�
W 𝐺úó

W 𝐸3,ÓY2^ß5W +
𝐺ú�
W 𝐺úó

W 𝐸3,X4dß5°
W + 𝐺úó

W 𝐸3,X4dß5�
W + 𝐸3,X4dß5ó

W )
[û
[Ù

𝑑𝑓	  . (5.17) 

 
The output referred noise power of the bridge, 𝐸3,ÓY2^ß5W , and output referred noise 

power of each amplification and filtering stage, 𝐸3,X4dß5K
W , is multiplied by the square of the 

noise gain, 𝐺úK
W , of the proceeding stages then summed and integrated over the bandwidth of 

the interface (lower, 𝑓Ò , to higher, 𝑓ü, 3	  𝑑𝐵 cut off frequency). The noise gain and output 

referred noise of each differential amplification, and filtering stage and output referred noise 

of the bridge are obtained from (5.18), (5.19).  

 𝐺úK = 1 + EÍK
EÎK

.  (5.18) 

 𝐸3,X4dß5K
W = 𝐺úK

W 𝐸23K
W + 𝑅ÌK

W �𝐼23K.
W +	   𝐼23K�

W   + 2	  𝑉3¢ÍK
W + 2 §

EÍK
EÎK
¨
W
𝑉3¢ÎK
W .  (5.19) 

For a perfectly matched and balanced bridge, with 𝐶5B,Z3 = 𝐶5B,xy = 𝐶�,éê = 𝐶�,îï =

𝐶5B, 𝑅5B,Z3 = 𝑅5B,xy = 𝑅],Z3 = 𝑅5B,xy = 𝑅5B: 

 𝐸3,ÓY2^ß5W = 𝑉d,3W + 𝑉],3W = E×
�J�H

� �KL
�

w�(E�H�E×)�J�H
� �KL

� 𝑉3¢�H
W + w�E�H

� J�H
� �KL

�

w�(E�H�E×)�J�H
� �KL

� 𝑉3¢×	  
W .  (5.20) 

The power density of the noise sources in units of 𝑉W/𝐻𝑧 are given in (5.21)-(5.24). 

 𝐸23K
W = 𝑒ýW ¥1 +

[�Lò
[
¦. (5.21) 

 𝐼23K.
W = 𝐼23K�

W = 𝑖ýW (1 +
[KLò
[
).  (5.22) 

 𝑉3¢�H
W = 4𝑘𝑇𝑅5B.  (5.23) 

 𝑉3¢×
W = 4𝑘𝑇𝑅^.  (5.24) 

𝑒ýW  and 𝑖ýW , are the opamp input-referred voltage and current white noise powers. 𝑓53a  and 

𝑓23aare the voltage and current noise power density corner frequencies. Replacing (5.18)-(5.24) 

in (5.17) and assuming [û.[Ù
[Ù

< 1, w
[KL
� ≪ 1, [�Lò

[Ù
≪ 1 and [KLò

[Ù
≪ 1, yields (5.25). 
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(5.25)	  

𝑓ü − 𝑓Ò,	  is replaced with ENB, in (5.25), for a 4th order band-pass filter 𝐸𝑁𝐵 = 1.025(𝑓ü − 𝑓Ò) 

[58, 59]. Note that if  𝑓53a > 𝑓Ò  and 𝑓23a > 𝑓Ò, the effect of flicker noise cannot be neglected. 

Based on (5.25), the ENB, of the required overall filtering to obtain 8-bit resolution can 

be determined using the typical application values for the bridge components,	  𝑅5B =

1	  𝑘Ω, 𝑅^ = 50	  𝑘Ω,𝐶5B = 100	  𝑛𝐹 and a gain distribution of 30 × 10.6 × 10.6 for the 

amplification and filtering stages, respectively. The values for the resistors in the amplification 

and filtering stage are set as,	  𝑅Ìw = 300	  𝑘Ω,𝑅`w = 10	  𝑘Ω, 𝑅ÌW = 𝑅Ì' = 16	  𝑘Ω,𝑅`W = 𝑅`' =

750	  Ω. With the given component values for the current design, the RMS value of noise at the 

ADC input is 75.231	  𝜇𝑉/√𝐻𝑧. For SNR of 10	  𝑑𝐵 and 5	  𝑑𝐵, the bandwidth of 14.94	  𝐻𝑧 and  

149.5	  𝐻𝑧 are required, respectively. In practice, however, for low frequency (< 10	  𝑘𝐻𝑧) 

measurements, the effect of flicker noise cannot be neglected entirely and other sources of non-

ideality like different component random variations may also add to the estimated total output 

referred RMS noise. There are also practical limitations on realizing filter bandwidth on the 

order of 10s of hertz, very small bandwidth leads to longer settling time of the interface 

response for step type input variations. Too narrow bandwidth is an important issue because 

the dynamics of analyte binding is fast and the readout interface should be able to follow the 

rapid changes in the response signal. Therefore the bandwidth value should be set both 

considering the amount of allowable noise and fast settling requirement. Although a higher 

filter bandwidth leads to worse SNR, proper digital signal processing technique, can effectively 

act as an additional filter and even extract the signal information buried in noise.  
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5.3 Amplification/Filtering ReadOut Characterization 

The designed amplification and filtering board is implemented and characterized using 

the Audio precision lab instrument (Fig. 5.5) set up to generate 100	  𝜇𝑉𝑟𝑚𝑠 differential input 

sine signal. With the full-scale range of ADC set to 1.2	  V, the differential gain of  3000	  V/V	   

or 70	  dB is nominally required for full-scale amplification of 1% fractional change. To 

maintain the 8-bit resolution with the fully differential amplification and filtering it is necessary 

that the differentially amplified LSB signal becomes at least twice the common-mode induced 

 

Fig. 5.5 Amplification and filtering board characterization using Audio precision 
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differential signal at the board output. This means a common-mode induced differential gain 

of less than −24	  dB, yielding CMRR of 94	  dB.  

Noise coming from the bridge and amplification and filtering unit is analyzed and 

roughly estimated to be 75.231	  𝜇𝑉/√𝐻𝑧. To achieve an SNR of 10	  dB or 5	  dB	  at LSB 

detection limit, filter bandwidth of 14.94	  Hz	  and 149.5	  Hz	  is required, respectively. 

Considering the fast settling requirements as well, a bandwidth of 270	  Hz is picked for filter 

design, and given the available commercial components the center frequency of the filter is 

expected to be 1.03	  kHz. Fig. 5.6 shows the measured results of differential gain transfer 

 

Fig. 5.6 Differential gain transfer function characterization 
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function characterization. The measured center frequency is at 1.02	  Hz, maximum gain is 

3330.33	  V/V corresponding to 70.44	  dB, the bandwidth is measured to be 265	  Hz.  

Common mode induced differential gain transfer function is also characterized and 

shown in Fig. 5.7. The maximum common-mode induced differential gain is -25.7	  dB, which 

yields to a CMRR of 96.14	  dB. For the practical characterization, stable common-mode 

voltage is provided for each differential difference amplifier (LTC6363) using a voltage 

regulator the value of the common-mode voltage is equal to half of the ADC full-scale 

reference voltage (0.6 𝑉). 

 

Fig. 5.7 Common mode induced differential gain transfer function characterization 
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 5.4 Conclusions  

Considering the tight accuracy requirements, while designing an interface to achieve 

modest 8-bit resolution for a 1% full-scale fractional transducer capacitance, many challenges 

arise. The differential bridge structure proposed in Chapter 4, although improving the 

performance, will not be effective if the differential tiny response signal at the bridge output is 

not acquired with sufficient accuracy. Noise is one of the most significant difficulties while 

amplifying such small voltages, but due to single-frequency operation, bandpass filtering 

effectively reduced the undesired noise. However, the required effective noise bandwidth of 

the filter should be decided based on both the bridge and amplification/filtering noise analysis, 

signal processing and binding rate considerations. Other than filtering, when dealing with a 

considerable differential gain after a symmetrical bridge, any mismatch effect will lead to 

common-mode to differential conversion, the overall system CMRR should be able to reject 

the common-mode interference at the smallest expected signal (8-bit) to be detected. 

Maintaining the symmetry of the bridge legs also is an important point while interfacing the 

bridge to a very high differential gain stage, while balancing the bridge common-mode to 

differential conversion can be avoided by matching the bridge upper legs with each other and 

lower legs with each other, respectively. With given design details in this chapter, an 

amplification and filtering board are designed, implemented and characterized. The designed 

board reaches a gain of 70.44	  dB and a bandwidth of 265	  Hz with 96.14	  dB of CMRR. With 

this given board, an SNR level of 5	  dB or less is expected at the minimum detection level. 

 With the very low SNR, at minimum detection limits, the data acquisition and filtering 

unit play an important role in resolving the tiny response signal buried in noise. The design 

steps for effective data acquisition and real-time processing units are given in the next chapter. 
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  REAL-TIME DATA ACQUISITION AND SIGNAL 
PROCESSING FOR BRIDGE BASED TRANSDUCTION INTERFACE 

6.1 Introduction 

For solution-electrode interfacial capacitance sensing, the characteristic change in the 

transducer impedance should ultimately be quantified. This complex impedance can be 

measured in real-time by extracting the amplitude and phase data from the amplified 

transducer’s response signal. While amplitude information can be obtained using just the 

response signal, the phase should be measured differentially with respect to some reference 

signal. The excitation source signal is utilized in the current design for the differential phase 

measurement. This is accomplished, in the two-channel acquisition system, shown in Fig. 6.1, 

the ADC alternatively samples the excitation voltage (i.e., the source signal) and the output of 

the amplification/filtering block (i.e., the response signal).  

 To automate this, the digital system must be able to extract these quantities from the 

digitized signal. sine-fitting algorithms are traditionally seen in ADC testing and 

characterization [60] as well as in impedance/frequency response measurements [61], and 

 

Fig. 6.1 General block diagram of differential bridge transduction based real-time 
amplification and filtering interface with single MCU for balancing and data 

acquisition/processing. 
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researchers have recently recognized the utility of sine-fitting algorithms for real-time 

processing of the transducer output voltage [33, 62]. 

There are many different approaches to sine-fitting, each with varying degrees of 

suitability in low-cost, real-time sensing applications. Sine fitting algorithms are widely used 

as effective methods to extract a digitized sine signal’s information like amplitude, initial 

phase, frequency, and DC offset. As seen, for the design of an accurate sine fitting, many 

different parameters must be set by the designer, such as sampling rate, SNR, ADC resolution, 

the record length, etc… All of these parameters will affect the design parameters of the sensor 

interface circuitry and the overall precision and accuracy of the sensor itself. Unfortunately, 

these effects are often not clear, and thus, the designer must study these tradeoffs for each 

design. 

This chapter will present a detailed analysis of the various tradeoffs for sensing 

requirements, and the results will help the designer pick the proper algorithm based on 

available budget, expected noise floor, required dynamic range, and accuracy with specific 

DSP hardware capabilities. 

6.2 Real-Time Non-Iterative Sine-Fitting Algorithms with Non-Idealities 

In general, sine fitting algorithms can be classified as either iterative or non-iterative. 

The iterative algorithms like the IEEE standard 4 parameter sine fitting [63], although 

providing better accuracy in some applications, are not the best candidates for real-time 

implementation, as, by nature, the convergence might require multiple iterations and data 

storage requirement brings about additional memory usage. Non-iterative algorithms, on the 

other hand, offer a better solution for real-time considering their relatively simpler 

implementation requirements. However, the accuracy of non-iterative approach with small and 



www.manaraa.com

74 

noisy signal and compatibility of them with low-cost general-purpose microcontroller 

implementation needs to be considered for real-time and field-deployable applications. 

With the assumption that the excitation source frequency (𝑓23) is known, and only the 

amplitude and differential phase extraction is targeted, two non-iterative sin parameter 

extraction algorithms;  IEEE standard 3 parameter sine fit (3PSF) [63, 64] and ellipse fit (EF) 

[65] are reviewed and compared in this paper. 3PFS is performed on single-channel sine signal 

data for the estimation of amplitude, initial phase and the DC offset. EF algorithm requires 2 

channel sine signal data for the estimation of amplitude ratio and differential phase of the 

channels, eliminating the need for the frequency to be known or estimated as the two channels 

share the same frequency. A brief introductory review of 2 non-iterative algorithms 3PFS with 

coherent sampling, and EF is given here. 

6.2.1 3 Parameter Sine Fit 

In the two-channel acquisition system, shown in Fig. 6.1, the ADC alternatively 

samples the excitation voltage (i.e., the source signal) and the output of the 

amplification/filtering block (i.e., the response signal). Consider a sequence of 𝑁 samples (k =

0, 1, . .N− 1) of a sine wave sampled at the rate of 𝑓6  for both channels. If the sine wave has a 

frequency 𝑓23 , an amplitude	  𝐴2 (i, denoting response or source respectively) , an initial 

phase	  𝜑2, and offset 𝐷𝐶2, it can be generally represented as: 

 𝑦2[𝑘] = 𝐴2 𝑐𝑜𝑠(2𝜋
[KL
[F
𝑘 +	  𝜑2) + 𝐷𝐶2.  (6.1) 

Source and response signals are derived from the same generator; therefore, they share 

the same frequency. The fitting algorithm is then responsible for estimates, in real-time, the 

amplitude of the signals, and the phase of the response signal with respect to the source signal. 
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If the ratio of 𝑓23/𝑓6 is known, the 3 parameters 𝐴2, 𝜑2, and 𝐷𝐶2 can be estimated for each 

channel, in the least-squares sense, using 3PFS [63]:  

	   .
𝐴/a,2
𝐴/6,2
𝐷𝐶0 2

1 = (𝐷Þ𝐷).w𝐷Þ 2
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𝑦2 [𝑁 − 1]

4	   (6.2)	  

where D for both channels is given to be:  
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[F	  
𝑁 − 1) 1⎦

⎥
⎥
⎥
⎥
⎤

.	   (6.3)	  

If the estimated signal, 𝑦<2[𝑘], is expressed as: 

 𝑦<2[𝑘] = 𝐴/a,2 𝑐𝑜𝑠(2𝜋
[KL	  
[F	  
𝑘) + 𝐴/6,2 𝑠𝑖𝑛(2𝜋

[KL	  
[F	  
𝑘) + 𝐷𝐶0 2	   (6.4) 

With some simple algebra using the coefficients 𝐴/a,2 and 𝐴/6,2 for each channel the 

amplitude and phase of 𝑦2 are estimated as [63]: 

	   𝐴/2 = �𝐴/a,2W + 𝐴/6,2W 	   (6.5)	  

	   𝜑<2 = 𝑡𝑎𝑛.w(.\
=F,K
\=ò,K

).	   (6.6) 

6.2.2 Ellipse Fit 

The ellipse fit takes advantage of two acquisition channels with mutual frequency, 

and by eliminating the time dependence of the sampled data from each channel, the algebraic 

representation of the resultant curve is [65]: 

	  ¥_°[n].ZJ°
\°

¦
W
+ ¥_�[n].ZJ�

\�
¦
W
− 2 (_°[n].ZJ°)(_�[n].ZJ�)

\°\�
× 𝑐𝑜𝑠�𝜑^2[[  − 𝑠𝑖𝑛W�𝜑^2[[  = 0(6.7) 

Where 𝑦w[𝑘], 𝑦W[𝑘] are the samples and 𝐴w,	  𝐴W are amplitude, 𝐷𝐶w,	  𝐷𝐶W are the offset 

for source and response and 𝜑^2[[  is the phase difference between the channels (𝜑^2[[=  𝜑W −
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𝜑w) here, subscripts 1 and 2 are used for source and response respectively. If (6.7) is further 

simplified and written in terms of sampled data, the curve forms an ellipse as [65]: 

 𝑎𝑦Ww[𝑘] + 𝑏𝑦w[𝑘]𝑦W[𝑘] + 𝑐𝑦
W
W[𝑘] + 𝑑𝑦w[𝑘] + 𝑒𝑦W[𝑘] + 𝑔 = 0.	   (6.8)	  

For which the ellipse constraint condition to be verified is 𝑏W − 4𝑎𝑐 < 0. With a 

scaling constant the condition is forced to 𝑏W − 4𝑎𝑐 = −1, other conditions to be met for valid 

ellipse fitting are non-zero amplitudes and	  𝜑^2[[ ≠ 0, 𝑛𝜋 where n is an integer. Solving for the 

coefficients in (6.8) with improved matrix-based method introduced in [66] the estimated 

amplitude ratio and differential phase can be obtained as: 

	   	  \
=@�F¯GLF�
\=FGA@ò�

= �d
a
	   (6.9)	  

	   	  𝑐𝑜𝑠�𝜑<^2[[  = − 62ß3(d)×]
W√da

	   (6.10) 

 
The remaining parameter to be estimated is the sign of the differential phase which can 

be determined based on the clockwise 𝜑^2[[  >0) or counterclockwise (𝜑^2[[<0) orientation of 

the constructed ellipse. Detailed equations for the voting algorithm to find the sign of 𝜑^2[[  is 

given in [65]. 

To have a quantitative comparison of the two introduced algorithms for each algorithm, 

we will study the effects of the oversampling ratio of the ADC and the SNR of the signal, as 

well as clock jitter and computational resource requirements. The investigated performance 

parameters are the percent amplitude error, and percent differential phase (𝜑^2[[= 𝜑Y56yA365 −

𝜑6ADYa5) error. The resultant error for each algorithm is then compared to find better noise 

immune estimation with various sampling frequency scaling. For the subsequent analysis, we 

assume two sine signals with an equal frequency of 1	  𝑘𝐻𝑧, the amplitude of 1	  𝑉, the relative 

phase difference of 45°, and the same DC offset of 0.6	  𝑉, which are generated using MATLAB. 
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    Real-time matrix implementation of 3PSF is not easily implemented in low-cost 

microcontrollers. The approach can be greatly simplified, however, by using coherent sampling. 

Coherent sampling is achieved when 𝑓23 𝑓6⁄ = 𝑀 𝑁⁄ , where 𝑀 and 𝑁 are relatively prime 

integers and represent the total number of input periods in the record and the full record length, 

respectively. Under the assumption of coherent sampling ([KL	  
[F	  
= Õ	  

ú	  
), the matrix 𝐷Þ𝐷 is 

diagonal, and its inverse is: 

	   (𝐷Þ𝐷).w = B
2/𝑁 0 0
0 2/𝑁 0
0 0 1/𝑁

C.	   (6.11) 

Therefore, with coherent sampling, (6.2) will simplify to: 

	   .
𝐴/a,2
𝐴/6,2
𝐷𝐶0 2

1 =

⎣
⎢
⎢
⎡2/𝑁∑ 𝑦2[𝑘]𝑐𝑜𝑠	  (2𝜋

Õ	  
ú	  
𝑘)ú.w

nE0

2/𝑁∑ 𝑦2[𝑘]𝑠𝑖𝑛	  (2𝜋
Õ	  
ú	  
𝑘)ú.w

nE0

1/𝑁∑ 𝑦2[𝑘]ú.w
nE0 ⎦

⎥
⎥
⎤
.	   (6.12)	  

  

For a given ratio of 𝑓23/𝑓6, the ratio of 𝑀/𝑁 remains fixed. Hence a lookup table can be 

used to compute the sinusoidal values associated with (6.12), dramatically reducing the required 

processing time. A primary concern, however, remains the effect of uncertainty in 𝑓23/𝑓6 as well 

as jitter in the sampling clock, 𝑓6  in the presence of very low SNR signals. 

The important metric of interest in the current design is the resolution of the resulting 

sensor, so the pointed non-idealities and their effect on 3PSF and EF estimation are examined 

under this context here. The resolution of the sensor output is defined, considering a full-scale 

voltage at the input of the ADC, 𝐴ÌX, and full-scale target phase difference, 𝜑ÌX. Therefore, if 

a target of 8-bit resolution is assumed to be achieved, then the estimation mean error and 

standard deviation should be within ±𝐴ÌX 2F⁄  and ±𝜑ÌX 2F⁄ 	  range. Moreover, to demonstrate 

a more generic reference plot, the estimation errors and resolution lines are normalized to full-
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scale values. For each non-ideality effect, the normalized estimation parameters of interest with 

their percent mean error and percent standard deviation are shown, and normalized resolution 

lines are drawn on the plots as an indicator of best achievable resolution with different levels 

of additive noise, jitter and shift in the excitation frequency. In this way, the designer can 

evaluate the reasonable, achievable dynamic range for the sensor with the expected level of 

noise, jitter and frequency accuracy with an optimized record length for a known 𝑀 𝑁⁄ .  

The theoretical derivations of amplitude and differential phase estimation mean and 

standard deviation for simplified 3PSF with coherent sampling in the presence of the 

abovementioned non-idealities are given in the following.  

6.2.3 Additive White Gaussian Noise 

3PSF algorithm can effectively reduce the effect of noise on the acquired data because it 

behaves like an additional averaging filter if the ratio of 𝑀/𝑁 is chosen considering the effect 

of SNR at the lower limits of detection [67].  

To see the effect of noise on the resolution of the sensor, let’s assume the noise, 𝑛nis 

additive white Gaussian noise. For a noisy coherently sampled signal, 

	   𝑦	  3A26_K [𝑘] = 𝐴2𝑐𝑜𝑠 §2𝜋
𝑓𝑖𝑛	  

𝑓𝑠	  
𝑘 + 	  𝜑2¨ + 𝐷𝐶2 + 𝑛n,	  	   (6.13) 

the estimation parameters in (6.12) are independent and unbiased in the presence of 

white Gaussian noise. In this case, the expected values of the estimation parameters are: 

𝐸G𝐴/a,2H = 𝐴Ia,2 = 𝐴2 cos𝜑2, 𝐸G𝐴/6,2H = 𝐴I6,2 = 𝐴2 sin𝜑2, and 𝐸G𝐷𝐶N0 H = 𝐷𝐶O 2 = 𝐷𝐶2. The 

covariance matrix, 𝐶3A265K , of the 3PSF with coherent sampling and an additive white Gaussian 

noise with variance 𝜎3W2 is [67] 
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	   𝐶3A2652 =

⎣
⎢
⎢
⎢
⎡
W
ú
𝜎3W2 0 0

0 W
ú
𝜎3W2 0

0 0 w
ú
𝜎3W2⎦

⎥
⎥
⎥
⎤
.	   (6.14) 

The estimated amplitude parameters, 𝐴/a,2 and 𝐴/6,2, in the presence of noise, are 

statistically analyzed and defined [48,49] with their expected values  of  𝐴Ia,2 and 𝐴I6,2, and equal 

variance 2𝜎3W2/𝑁. The amplitude and initial phase	  𝐴Q 𝑖 and 𝜑<2, are functions of the statistically 

defined random variables 𝐴/a,2 and 𝐴/6,2. The mean and variance of a function of two random 

variables 𝑓(𝐴/a,2, 𝐴/6,2), can be approximately derived based on Taylor series expansion of the 

function about the expected values of associated random variables 𝐴Ia,2 , 𝐴I6,2, as shown in [66-

68] 

	   𝐸G𝑓�𝐴/a,2 , 𝐴/6,2 H ≈ 𝑓�𝐴Ia,2 , 𝐴I6,2  +
w
W
( R�[
R\=ò,K

� 𝐶ww + 2
R�[

R\=ò,KR\=F,K
𝐶wW +

R�[
R\=Ú,K

� 𝐶WW)	   	  (6.15) 

	   𝑣𝑎𝑟G𝑓�𝐴/a,2 , 𝐴/6,2 H ≈ § R[
R\=ò,K

¨
W
𝐶ww 	  + 2

R[
R\=ò,K

R[
R\=F,K

𝐶wW + (
R[
R\=F,K

)W𝐶WW	   (6.16)	  

Using (6.15) and (6.16) the mean and variance of the estimated amplitude and initial 

phase can be derived in the presence of noise: 

	   𝐸G𝐴/2H ≈ 𝐴I2 +
w
ú
TL�K
\UK
≈ 𝐴I2 ¥1 +

w
Wú∙XúEK

¦	   (6.17)	  

	   𝑣𝑎𝑟�𝐴/2  ≈
W
ú
𝜎3W2	   (6.18) 

	   𝐸[𝜑<2] ≈ 𝜑W2 	  ,	  𝑣𝑎𝑟(𝜑<2) ≈
w

ú∙XúEK
	   (6.19) 

Based on (6.17), the amplitude estimation is biased with noise present. When alternate 

sampling is used, as shown in Fig. 6.1, the initial phase of the response signal is measured with 

reference to the source signal. Therefore, the variance of the differential phase can be derived 

as:  

 𝑣𝑎𝑟G𝜑<^2[[H = 𝑣𝑎𝑟G𝜑<Y56yA365H+ 𝑣𝑎𝑟[𝜑<6ADYa5] − 2𝑐𝑜𝑣�𝜑<Y56yA365,𝜑<6ADYa5  (6.20) 
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When the source and response signal are corrupted by additive noise, the initial phase 

estimations are independent (i.e., 𝑐𝑜𝑣(𝜑<Y56yA365,𝜑<6ADYa5)=0). From (6.19) and (6.20), if the 

same record length is assumed for both channels, the variance of the differential phase can be 

derived as: 

 𝑣𝑎𝑟G𝜑<𝑑𝑖𝑓𝑓H ≈
w
ú
§ w
XúE@�F¯GLF�

+ w
XúEFGA@ò�

¨ (6.21) 

 
Theoretical simulations with MATLAB are carried out for the EF algorithm in the 

presence of additive white Gaussian noise. For 3PSF (3PSF is the coherent sampling type), 

simulations are carried out both numerical and based on the derived theory. For these 

simulations, the sampling rate, 𝑓6 , and input frequency, 𝑓23, are constant and equal to 55	  𝐾𝑆/𝑠 

and 1	  kHz, respectively. The values 𝑀 and 𝑁, are changed providing record lengths of 256, 

512 and 1024 samples with 5, 9, and 19 cycles, respectively to maintain the fixed 𝑀 𝑁⁄  ratio.   

Fig. 6.2 and Fig. 6.3 show the normalized mean amplitude and differential phase 

estimation error along with the associated standard deviation for response SNR ranging from 

−5 to 30	  𝑑𝐵 and 1000 simulations at each point for the 3PSF and EF algorithms, respectively. 

The SNR at the source is fixed and set to 30 dB for the simulations in Fig. 6.2 and Fig. 6.3. 

Apparently, with a larger record length, lower uncertainty in the estimation is achievable even 

for SNR values less than 0	  𝑑𝐵. The best achievable resolution shown in Fig. 6.2 for 3PFS, is 

between 4 to 5 bits for both amplitude and differential phase estimation in SNR values less 

than 0	  𝑑𝐵 with 𝑁	   = 	  1024. Amplitude and phase estimations are both biased for SNRs less 

than 25	  𝑑𝐵. The mean estimation error increases and leads to a lower resolution as the SNR 

gets worse. This shows that the EF algorithm is not at all reliable if the final sensor response 

at the lower detection limit is expected to have SNR even less than 0	  𝑑𝐵. 
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Both algorithms were also numerically studied with varying sampling rates and low 

SNRs to confirm if a higher sample rate leads to better estimation performance in a noisy 

environment. For these numerical simulations oversampling ratios ranging from 4 to 256 and 

the input, SNR is assumed to range from -5 to 35 dB. Simulations for the 3PSF produce an 

average percent error within 1% both for the amplitude ratio and the differential phase for the 

256 samples in the record.  

The produced estimation results show that with lower sampling to excitation frequency 

ratio, 3PSF can produce reliable results at very low SNRs with even 4 samples taken per period. 

The more number of samples within a record generates more accurate results with worse SNR 

levels. However, this might place a limit on how fast result production could be at very low 

(sub-Hz) excitation frequencies. In [69] sit is shown that utilizing 3PSF for a sub-Hz sensor 

response, can produce an impedance estimation variance of 1% while the record covers only 

 

Fig. 6.2 3PSF (a) percent mean amplitude and (b) differential phase estimation errors with 
their normalized standard deviations (error-bars) vs. SNR 
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11% of the whole period. This makes 3PSF design flexible for various excitation frequencies 

and signal to noise ratios.  

EF behavior is largely affected by decreasing SNR, the average amplitude and phase errors 

are still strongly biased for SNR values less than 30	  𝑑𝐵, because the ratio of the amplitudes is 

directly being estimated with EF algorithm, the relative SNR of the two channels would affect 

the average amplitude ratio error, but the differential phase average error is constantly 

degrading with lower SNR values. EF requires at least 6 samples per period to produce more 

accurate results at even moderate SNRs. A change is observed in the polarity of differential 

phase estimation error for the EF at higher sampling rates and low SNR values (also addressed 

in [65]), which stems from the voting algorithm failure in determination of ellipse orientation 

([64]located samples at low SNR increase the probability of incorrect voting). Therefore, 3PSF 

with coherent sampling provides more accurate results without requiring higher sample rates 

at low SNRs compared to EF. 

 

Fig. 6.3  EF (a) percent mean amplitude and (b) differential phase estimation errors with 
their normalized standard deviations (error-bars) vs. SNR 
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6.2.4 Sampling Clock Jitter 

Sampling clock jitter causes uncertainty in 3PFS and EF estimation results. The 

uncertainty caused by sampling clock jitter can be modeled as a normally distributed random 

variable 𝛼2,n	  with zero mean and standard deviation equal to 𝜎ZK  . A coherently sampled signal 

with jitter is modeled as,        

𝑦[2445Y2[𝑘] = 𝐴2𝑐𝑜𝑠�2𝜋𝑓23�𝑡n + 𝛼2,n  +	  𝜑2  + 𝐷𝐶2 = 𝐴2𝑐𝑜𝑠�2𝜋𝑓23𝑡n + 𝜃2,n +	  𝜑2  + 𝐷𝐶2	   	  	  	  	  	  (6.22) 

where 𝜃2,n is a normally distributed random variable with zero mean and standard 

deviation 2𝜋𝑓23𝜎ZK = 𝜎2. In the presence of jitter, the 3PSF is no longer an unbiased estimator 

for 𝐴/a,2 and 𝐴/6,2, the expected values for the 3 parameters are:  

	   𝐸G𝐴/a,2H = 𝐴2𝑒
�]K

�

� 𝑐𝑜𝑠𝜑2,	   (6.23) 

	   𝐸G𝐴/6,2H = −𝐴2𝑒
�]K

�

� 𝑠𝑖𝑛𝜑2,	   (6.24)	  

	   𝐸G𝐷𝐶0 2H = 𝐷𝐶2.	   (6.25) 

 If the initial phase,	  𝜑2, is assumed to be constant, the covariance matrix of the estimator 

in the presence of jitter, 𝐶[2445Y2, is derived (6.26).  

 𝐶[2445Y2 =

⎣
⎢
⎢
⎢
⎡
\K�

ú
(1 − 𝑒.TK�)(1 − w

W
𝑒.TK� cos2𝜑2) 0 0

0 \K�

ú
�1 − 𝑒.TK�  ¥1 + w

W
𝑒.TK� cos2𝜑2¦ 0

0 0 \K�

ú
¥1 − w

W
𝑒.TK�¦⎦

⎥
⎥
⎥
⎤

	  	  	  	  	  	  	  	  	  	  	  	  	  (6.26) 

The approximate mean and variance of amplitude and initial phase estimation with 

jitter present, using (6.15) and (6.16) are: 

	   𝐸G𝐴/2H ≈ 𝐴2𝑒
�]K

�

� + \K
Wú
(1 − 𝑒.TK�)(𝑒

]K
�

� + w
W
𝑒
�]K

�

� )	   (6.27)	  

	   𝑣𝑎𝑟�𝐴/2  ≈
\K�

ú
(1 − 𝑒.TK�)(1 − w

W
𝑒
�]K

�

� )	   (6.28)	  
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	   𝐸[𝜑<2] ≈ 𝜑W2 	  	  , 𝑣𝑎𝑟(𝜑<2) ≈
w
ú
(1 − 𝑒.TK�)(𝑒TK� + w

W
).	   (6.29)	  	  	  	  

In the presence of jitter, the estimations for source and output initial phases are 

independent, i.e., 𝑐𝑜𝑣�𝜑<Y56yA365,𝜑<6ADYa5  = 0. The differential phase variance is derived 

using (6.20) and (6.30): 

 𝑣𝑎𝑟G𝜑<^2[[H≈ 1
𝑁 {¥1− 𝑒

−𝜎𝑠𝑜𝑢𝑟𝑐𝑒2¦(𝑒𝜎𝑠𝑜𝑢𝑟𝑐𝑒
2
+ 1
2)+ ¥1−𝑒−𝜎𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒2¦(𝑒𝜎𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

2
+ 1
2)}	   (6.30) 

The approximate expression for the differential phase variance given in (6.30) is the 

sum of the source and response initial phase variances.  

 Based on derivations and numerical simulations, the mean of the amplitude and 

differential phase errors with their normalized standard deviations for 1000 simulations at each 

point is plotted in Fig. 6.4 and Fig. 6.5 as a function of jitter standard deviation up to 2𝜋 for 

3PSF and EF, respectively. If we examine the mean error in the estimated amplitude using 

(6.27): 

	   𝑙𝑖𝑚
ú→`

𝜀\K = 	   𝑒
�]K

�

� − 1	   (6.31) 

 

Fig. 6.4 3PSF (a) percent mean amplitude and (b) differential phase estimation errors with 
their normalized standard deviations (error-bars) vs. jitter standard deviation 
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Although it is seen in (6.31) that the amplitude mean error will never go to zero for 

3PSF which is also claimed in [70], but with a record length of 1024, 8-bit detection resolution 

for both amplitude and phase is achievable even at non-realistically high jitter standard 

deviation of around π radians. Fig. 6.5 shows a similar numerical simulation with sampling 

clock jitter for EF. While amplitude estimation error is within target 8-bit resolution for the 

EF, even at large jitter standard deviations, the differential phase estimation is strongly biased 

and affected by jitter. Based on obtained results, 3PSF can maintain the target 8-bit resolution 

at even jitter standard deviations close to 2π radians, by controlling the record length.   

  It is worth mentioning here that the obtained results for this analysis are dependent on 

the source and sampling frequency. The maximum allowable jitter using an ADC with a 

resolution of 𝑅 bits, and a sine wave input with an amplitude equal to the ADC full-scale and 

frequency of  𝑓23 , to have a jitter induced error of less than half LSB is inversely proportional 

 

Fig. 6.5 EF (a) percent mean amplitude and (b) differential phase estimation errors with 
their normalized standard deviations (error-bars) vs. jitter standard deviation 
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to (2𝜋𝑓232E). The maximum allowable jitter, therefore, gets smaller if the sine wave has an 

amplitude lower than full scale, higher frequency, and higher resolution for the ADC. As an 

example, jitter considerations gain more importance for sensors with hundreds of 𝑀𝐻𝑧	  or 𝐺𝐻𝑧 

level excitation frequencies or when the response signal is not sufficiently amplified to the full-

scale range of the ADC, which is specifically the case at lower detection limits using fixed 

overall amplification gain. 

6.2.5 Non-Coherency 

A fundamental assumption while simplifying the implementation of the real-time 3PSF 

algorithm is that the data belongs to a coherently sampled sine wave. Depending on the 

accuracy level of the source sine wave generator, however, the desired source frequency may 

deviate from its actual value. The result will be that the record will not contain exactly 𝑀 cycles 

of the input signal, and the look-up table for computing (6.12) will no longer represent correct 

samples leading to errors in the estimated amplitude and initial phase.  

The effect of the shift in the source frequency can be modeled by assuming a shift in 

the 𝑓23  such that [67]: 

	   𝛥𝑓 = 𝑓 − 𝑓23 =
(b.c)[F
ú

	   (6.32)	  	  

Where 𝑄 is the integer part, and 𝛿 is the fractional part of the residue. The result is a 

shift in the number of periods sampled. Now, 𝑀f = 𝑀 + 𝑄.𝛿 and the actual waveform can 

be expressed as: 

	   𝑦^5ÔK [𝑘] = 𝐴2 𝑐𝑜𝑠(2𝜋
Õ�b.c
ú

𝑘 + 	  𝜑2).	   (6.33) 

 

 

 



www.manaraa.com

87 

Using (6.9) and (6.12) the amplitude is estimated as:  

 𝐴/2(𝑄. 𝛿) =	   	  

{[2/𝑁g 𝐴2 𝑐𝑜𝑠(2𝜋
𝑀 + 𝑄.𝛿

𝑁 𝑘 +	  𝜑2) 𝑐𝑜𝑠(2𝜋
𝑀	  
𝑁	   𝑘)

ú.w

nE0

]W +	  

	   [2/𝑁∑ 𝐴2 𝑐𝑜𝑠(2𝜋
Õ�b.c
ú

𝑘 +	  𝜑2) 𝑠𝑖𝑛(2𝜋
Õ	  
ú	  
𝑘)ú.w

nE0 ]W}w/W	  	   (6.34)
                

which can be further simplified as a function of ∆𝑓 to be: 

𝐴/2(∆𝑓) =	  	  
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The initial phase estimation, as a function of 𝑄. 𝛿, can be derived using (6.10) and 

(6.6): 

	   𝜑<2(𝑄.𝛿) = 𝑡𝑎𝑛.w(
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which can be further simplified and written as a function of frequency deviation, ∆𝑓: 

	   𝜑<2(∆𝑓) = 𝑡𝑎𝑛.w[𝑡𝑎𝑛(𝜑2 + 𝜋𝑁
∆[
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)

4d3(Ï
ØKL	  
ØF	  

)
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�Ï

ØKL
ØF
)
].	   (6.37)	  

 

 Fig. 6.6(a) shows the normalized amplitude estimation with deviation in source 

frequency. For higher numbers of samples, with approximately equal input frequencies and a 

constant sampling rate, the system becomes much more sensitive to uncertainty in the ratio of 

𝑓23/𝑓6.  Fig. 6.6(b) shows the zoomed-in plot of amplitude error with non-coherency, for 𝑁 =

1024,𝑀 = 19. It is seen that for 8-bit detection resolution, a shift of approximately 5	  𝐻𝑧 can 

be tolerated, and if the resolution is relaxed to 4 bit, a shift of 22	  𝐻𝑧 can be tolerated. With the 

typical accuracy level of on-chip sine wave generators utilizing PLLs or DDS for discrete 

implementation, at 𝑘𝐻𝑧 range this amount of non-coherency is not a concern for amplitude 
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estimation. However, at 𝑀𝐻𝑧	  or 𝐺𝐻𝑧	  range, the accuracy of the generated sine wave is more 

of a limiting factor while picking the record length.  

As also discussed in earlier sections, the differential phase is measured in the two-

channel system of Fig. 6.1. The theoretical and numerically simulated initial phase estimation 

of source and response with non-coherency are shown in Fig. 6.7.  A deviation in the source 

 

Fig. 6.6 3PSF (a) amplitude estimation (b) zoomed-in Mean amplitude percent error and 
normalized percent detection resolutions, vs. source frequency deviation 

 

 

 

 

Fig. 6.7 3PSF initial phase estimation vs. source frequency deviation for 𝜑6ADYa5 = 45°, 
𝜑Y56yA365 = 90° 

 

 
. 
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frequency will result in a linear increase in the initial phase, but the slope of this change, as 

derived in (6.37), is equal for both source and response signals, as they are sharing a mutual 

source frequency.  

Therefore, the resultant differential phase will not be affected by frequency deviation 

for any record length. It should be pointed out that, as seen in Fig. 6.6(a), the estimated 

amplitude will go to zero when 𝛿 = 0 (i.e., when ∆𝑓 = b
ú
𝑓6), causing a discontinuity in the 

initial phase estimation at the same points. The shift in frequency effect is not considered for 

EF performance evaluation here because the two channels are supposed to share a mutual 

frequency; therefore, any shift appears in both channels leaving the results unaffected.       

6.2.6 Real-Time Processing Requirements 

  Real-time dual-channel implementation requirements of the introduced algorithms are 

compared in Table I. For real-time implementation. Each algorithm needs to perform some 

mathematical operations on the taken individual samples from each channel and store the 

results in specific variables and update it by each incoming sample. The related implementation 

cost is, therefore, compared in the context of the required number of mathematical operations, 

functions, lookup tables, and the number of memory positions needed to hold the variables, 

per fixed number of data within a record. Final amplitude and differential phase calculation 

based on the updated variables, after real-time acquisition and processing of the samples within 

one record is not included for any of the algorithms in Table 6.1.  

While the trigonometric function and square root calculations to produce final results 

could be implemented with lookup tables for lower computational time for all the algorithms, 

the EF algorithm requires additional matrix operations to solve the coefficients equation (6.8). 

According to Table 6.1, one can estimate the execution time of each record within the real-
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time loop in the algorithm code based on the number of clock cycles required for each specific 

math operation. Based on the known excitation frequency assumption, values of sin	  (2𝜋𝑓23𝑡n) 

and cos(2𝜋𝑓23𝑡n) can be pre-computed, and a singular look-up table would produce both sin 

and cos values for the 3PSF.  

The “arg” and “sign” functions are required for the EF. However, a look-up table would 

make it faster to execute the “arg” function. Based on the numerical simulations and also 

information from Table. 6.1, 3PSF maintains better accuracy compared to EF at low SNRs and 

with lower samples taken per cycle. Table. 6.1 also suggests that 3PSF can be implemented 

with lower computational cost in comparison. Therefore 3PSF offers a better solution in 

dealing with accuracy and complexity challenges discussed earlier.  

 
6.2.7 Discussion 

At the lower limits of detection for most of the sensors that with very small full-scale 

target change, the resolution is mainly affected by the noise level. Additionally, when the 

sensor response is still small and comparable to the noise level even after amplification, clock 

jitter will also induce some noise and degrade the SNR. Therefore, for better performance in 

expected low SNRs (even SNR < 0 dB), higher record length for coherent sine fitting is 

Tabel 6.1 Real-time dual-channel implementation requirements of the 
2 introduced algorithms 

Algorithm Variable 
count 

Mathematical 
operation 

count 
Function 

Required 
look-up 

table 
count 

3PSF 6 × 4 sin, cos 1 
+ 6 

 
EF 

 
17 

× 14 arg, sign 
 1 + 19 
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suggested while keeping an eye on the sensitivity to the ratio of 𝑓23 𝑓6⁄ . It is also shown here 

that a shift in the source frequency and sampling clock jitter will affect the estimated amplitude 

at any detection resolution while the differential phase is not degraded by the non-coherency 

effect using the alternate sampling method. However, with typical accuracy levels of sine 

generation and the fact that both sampling clock and source signals are driven by a single 

sinusoidal source in most cases, jitter and source frequency shift will have a minor effect on 

the detection resolution both in terms of amplitude and differential phase. 

 Real-time processing of the data obtained from the sensor will eliminate the need for 

data storage and memory requirements and lead to lower cost of the overall system. A less 

complex data processing algorithm with lower memory requirements, such as 3PSF, facilitates 

the use of the same microcontroller for bridge digital balancing and calibration algorithms.  

6.3   Board Sensitivity Test for Capacitance Change 

The bridge based transduction and interface readout system shown in Fig. 6.1 is 

designed with the guidelines given in Chapters 4-5. Fig. 6.8 shows the implemented board with 

the bridge transduction and first differential amplification stage, 2 stage amplification, and 

filtering, and the digital data acquisition and sin fitting with the TI MSP-EXP432P401R 

responsible for the balancing too. 

Record length of 1024, is picked for the design, both considering the expected SNR of 

approximately 8	  𝑑𝐵 or less, with a filter 𝐸𝑁𝐵 ≈ 250	  𝐻𝑧, and the maximum microcontroller 

master clock rate of 48	  𝑀𝐻𝑧. The 14	  𝑏𝑖𝑡, 1.2	  𝑉 full scale, differential ADC samples the 

1.03	  𝑘𝐻𝑧 source and response signals at 55	  𝐾𝑆/𝑠 sampling rate. The ADC alternatively 

samples the response and source channels, and writes the data to dedicated ring buffers while 

the processor continuously reads the ring buffers and applies coherent 3PSF, to every 19 cycles  
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of the signals. In this way, the resultant magnitude and differential phase of the two channels 

are available in real-time for series RC electrode-solution interface characterization. 

Sensitivity and capacitive change measurement accuracy of the series-RC balancing is 

validated using the same setup shown in Fig. 6.9. After balancing the bridge for DC and with 

solutions bias adjusted to the DC potential at the balanced DC voltage of the working 

electrodes, AC balancing is performed. The capacitance array 𝐶],Z3	  is then changed in binary-

weighted steps (8-bit) up to the total of 1% fractional change in the capacitance value at the 

initial balance point (this is done with an additional MCU manually for the experiment). For 

the 200	  𝑛𝐹 initial capacitance value, the capacitance change steps are 

nominal,16	  𝑝𝐹,	  32	  𝑝𝐹,	  64	  𝑝𝐹,	  128	  𝑝𝐹, 32	  𝑝𝐹,	  64	  𝑝𝐹,	  128	  𝑝𝐹, 256	  𝑝𝐹, 512	  𝑝𝐹, 1024	  𝑝𝐹, 

 

Fig. 6.8 implemented board with the bridge transduction and first differential 
amplification stage, 2 stage amplification and filtering and the digital data acquisition and 

sin fitting with the TI MSP-EXP432P401R 
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and	  2048	  𝑝𝐹, this is supposed to mimic the change in working electrode-solution capacitance 

𝐶5B,Z3, with target binding.  

Phase behavior with capacitance change can be indicative of the type of initial 

imbalance. For example, if there is initially a phase change with 𝐶],Z3, changing, then there is 

an initial resistive imbalance in the bridge based on (4.9). With the known balancing array 

values at the initial balance point, the initial possible resistance and/or capacitance mismatch 

can be calculated using (4.10) and (4.11). Fig. 6.10, shows the sensitivity analysis for a 1% 

fractional capacitive change on 𝐶],Z3, where the measured capacitance Δ𝐶i5d6DY5^ change is 

plotted vs. each corresponding manually adjusted binary-weighted capacitance change 

Δ𝐶3Ai23dB. 

 

Fig. 6.9 Sensitivity and capacitive change measurement accuracy, experimental setup 
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The measured magnitude and phase change at each Δ𝐶3Ai23dB, is mapped to a 

corresponding Δ𝐶i5d6DY5^, the bridge transfer functions (4.10) and (4.11). Given the initial 

bridge imbalance and the fact that mainly the capacitance is changing manually, the initial 

resistance mismatch is calculated using the changing phase information and assumed to stay 

constant during the experiment. As shown in Fig. 6.10(b), the lower 4-bits of detection range 

is quantified more clearly using the differential phase from (4.11) and upper 4-bits with the 

apparent magnitude change using (4.10). The linear fit to ΔCi5d6DY5^ vs. Δ𝐶3Ai23dB shown in 

Fig. 6.10(a) has linearity with a slope of 0.99 and the coefficient of determination 𝑅W = 0.999. 

The measurement error is the absolute difference between ΔCi5d6DY5^ and Δ𝐶3Ai23dB divided 

by Δ𝐶3Ai23dB as shown in (6.38) and remains below 0.5 at each point. The characterization 

result indicates that by utilizing fine-tuning arrays and both magnitude and phase data, the 

differential setup shown in Fig. 6.1 can successfully detect a 1% fractional capacitance change 

at the interface, with an 8-bit resolution. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Measurment	  Error = |𝚫𝐂𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅.𝚫𝑪𝒏𝒐𝒎𝒊𝒏𝒂𝒍|
𝚫𝑪𝒏𝒐𝒎𝒊𝒏𝒂𝒍

	                                (6.38) 

  
Fig. 6.10 (a) 8-bit ΔCi5d6DY5^ vs. Δ𝐶3Ai23dB, calculated using magnitude and 
phase change transfer functions, (b) phase Δ𝜙 and magnitude Δ𝑉 change vs. 
Δ𝐶3Ai23dB, phase is linear at lower 4 Bits and magnitude is linear at higher 4 

Bits. 
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6.4 Conclusions 

Other than the careful design requirements for the amplification/filtering read-out 

interface after bridge transduction, the very small detection signals that are expected to have 

SNR values less than 1 to 5	  𝑑𝐵 even after filtering, brings about the necessity to think of an 

effective signal acquisition and processing method that is capable of extracting data from a 

signal even buried in noise. To make it more challenging by the application demands, the 

acquisition and processing need to be done in real-time!  

Here, coherent 3PSF as a powerful non-iterative algorithm is adopted for 

implementation within a simple microcontroller to both satisfy the low cost and real-time 

requirements. The detailed design assumptions and practical considerations in the presence of 

non-idealities are given for the design of coherent 3PSF that can be effective in very low SNR 

levels. Design, implementation and performance verification of the acquisition and processing 

unit is the last stage before making sure that the system is potentially sufficient to detect 

MCLR. In the next chapter, the experimental measurement results with MCLR using the 

designed biosensor are demonstrated.   
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  SYSTEM FABRICATION AND MEASUREMENT 

7.1 Experimental Measurements with the Bridge Transduction Based 
Biosensor for Detecting MCLR 

The experimental setup for actual MCLR toxin detection with the designed portable 

biosensor is shown in Fig. 7.1(a). The bridge is configured the same as the block diagram 

shown in Fig. 4.1, the transducer under test is an MCLR-antibody factionalized electrode with 

the steps explained in Chapter 3. The transducer under test is placed in a costume designed 

flow chamber Fig. 7.1(b) with approximately 1.6	  𝑐𝑚' volume. The flow chamber has an inlet 

and an outlet for injecting solution and waste exit, and two spacing on the sides for the 

transducer chip and external Ag/AgCl reference electrode to slide into the chamber. The 

chamber is carefully sealed after inserting the electrodes so that the waste only gets out through 

the outlet.  

 

(a)                                                               (b) 

Fig. 7.1 (a) Customized flow chamber compatible with the purchased gold patterned 
transducers (b) The experimental setup for actual MCLR toxin detection with the 

designed portable biosensor. 
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For these measurements, the toxin will only be injected into the flow chamber, and the 

secondary functionalized transducer at the upper bridge leg is placed inside a biased solution 

for maintaining differential measurement strategy and help reduce the common-mode 

interference effects mutual between the transducers.  Both solutions at the upper and lower 

bridge legs are biased at the same level as the working electrodes DC bias levels (60	  𝑚𝑉) for 

drift suppression. 

The transducers are both placed in the PBS buffer solution and wait connected to the 

setup for approximately one hour before balancing; this is required for the solutions to 

equilibrate. The more stable the transducers in the solution, the less challenging the balancing 

will be. The bridge balance is carried out with the balancing algorithm introduced in Chapter 

4 (Fig. 4.6). After obtaining a balance condition for the bridge, the interface output is observed 

for any required rebalance, and once a stable and low drift signal is observed, the actual 

experiment starts. 

MCLR diluted solutions are prepared using PBS 1X as the base solution; the target 

toxin concentrations for experimentation are 0.1	  𝜇𝑔/𝐿, 1	  𝜇𝑔/𝐿 and 10	  𝜇𝑔/𝐿. The experiment 

will start by injecting 10	  𝑚𝑙 of, 0.1	  𝜇𝑔/𝐿 MCLR solution with a flow rate of roughly 

3	  𝑚𝑙/𝑚𝑖𝑛, through the inlet. The injection process causes spikes in the response; therefore, 

the next experiment step will start after the response signal gets to a settled state. Once a stable 

signal is observed, the second and third MCLR concentration is injected with a similar 

procedure.  

During the experiment, the MCU acquires the response signal, and after coherent sine 

fitting, the amplitude and phase data are available for solution-electrode interface capacitance 
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and resistance parameter extraction. Table 7.1 shows the calculated percent fractional interface 

capacitance, and resistance change values at the initial PBS buffer start step and with increasing 

MCLR concentrations. The values reported in Table 7.1 are obtained from the final settled 

state data. The results show that as a proof of concept, the bridge transduction based capacitive 

biosensor with a very sensitive read-out interface is capable of detecting MCLR concentrations 

with distinct detection levels for capacitance and resistance values. 

Interestingly, the change observed in both capacitance and resistance of the interface 

reveals that the difference in the interface resistance values is detected as the solutions are 

changed during the experiment. A statistical evaluation of the collected results is not provided 

here because the data is collected from separate electrodes at each experiment.  

Table 7. 1 The transducers final settled overall fractional capacitance and resistance 
change values for the initial buffer and set of 3 MCLR solutions with increasing 

concentration levels 

Transducer: Fractional change PBS 0.1 
µg/L 

1 
µg/L 

10 
µg/L 

 
Tr.1 

𝐓𝐫.𝟏:
∆𝐶5B,Z3
𝐶5B,Z3

	  (%) 0.07 0.39 0.7 0.61 

𝐓𝐫.𝟏:
∆𝑅5B,Z3
𝑅5B,Z3

(%) 0.1 1.5 2.35 
 

2.75 
 

Tr.2 
𝐓𝐫.𝟐:

∆𝐶5B,Z3
𝐶5B,Z3

(%) 0.03 0.15 0.58 1.34 

𝐓𝐫.𝟐:
∆𝑅5B,Z3
𝑅5B,Z3

(%) 0.02 0.96 2.37 4.7 

Tr.3 
𝐓𝐫.𝟑:

∆𝐶5B,Z3
𝐶5B,Z3

(%) 0.046 0.1 0.52 
  

0.63 

𝐓𝐫.𝟑:
∆𝑅5B,Z3
𝑅5B,Z3

(%) 0.0075 0.7 0.16 -0.27 

Tr.4 
𝐓𝐫.𝟒:

∆𝐶5B,Z3
𝐶5B,Z3

(%) 0.044 1.08 1.22 1.86 

𝐓𝐫.𝟒:
∆𝑅5B,Z3
𝑅5B,Z3

(%) 0.12 -1 -1.2 -1.82 
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Fig. 7.2 shows the raw real-time extracted fractional transducer capacitance and 

resistance percent change (�J�H,L
J�H,L

, �E�H,L
E�H,L

	  ) utilizing the known balanced state parameters with 

equations (4.10) and (4.11) for transducer Tr.2. The results show that settled state values of the 

resistance and capacitance change, give distinct detection levels at each MCLR concentration 

and this is a proof of concept, even with the maximum full-scale change of capacitance in the 

experiment remaining below 1.5%. 

            Fig. 7.3 shows the raw extracted real-time capacitance and resistance fractional change 

amounts plotted for the set of 4 transducers Tr.1-Tr.4. The increase or decrease in the resistance 

and capacitance for all the transducers follows a uniform trend. The capacitance or resistance 

fractional change either shows an increasing or decreasing trend with the consecutive 

concentrations.  

 

 

 

 

Fig. 7. 2 Raw real-time extracted fractional transducer (a) capacitance and (b) resistance 
percent change, showing the settled states after injection at each MCLR concentration for 

the experiment with the transducer Tr.2 
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Fig. 7.3 Raw real-time extracted fractional transducer capacitance and resistance percent 
change (�J�H,L

J�H,L
, �E�H,L
E�H,L

	  ) for experimental measurements with 4 set of electrodes Tr.1-Tr.4. 
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7.2 Conclusions 

The experimental setup design for differential sensing of MCLR with the developed 

bridge-based capacitive read-out interface is shown in this chapter. The drift rate is effectively 

controlled with the DC bias application both to the working electrodes and solution. With the 

controlled drift rate the real-time detection of MCLR and exploring the binding dynamics is 

made possible. The obtained real-time interface capacitance and resistance change are both on 

the order of couple percent in general for the total range of utilized concentrations. The primary 

advantages of this setup is that distinct detection levels with settled values are achievable at 

most of the experiments. The experimental results reveal that both resistance and capacitance 

change values can used for detection. The solution resistance shows a higher change compared 

to the percent change in the interface capacitance. This change can be studied in more detail to 

find out the potential factors impacting the solution resistance during experiment, for example 

the slight difference in the pH values of different solutions. This experimental validation shows 

that using the capacitance change levels obtained after injecting the MCLR into the flow 

chamber, concentrations as low as 0.01	  𝜇𝑔/𝑙 can be detected. 
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  GENERAL CONCLUSIONS 

As part of the biosensor development process, a low-cost, simple, fully differential 

capacitive bridge based readout interface is designed, implemented and characterized in this 

work. The design goal is to achieve an 8-bit resolution for sensing a fractional capacitance 

change of roughly	  1%. Differential bridge structure with two transducers is employed, and 

digitally controlled series RC networks are utilized for balancing. Fully differential 

amplification along with bandpass filtering is carried out to fight against noise and common 

mode interference and amplify the response signal to meet the ADC reference voltage at the 

expected full scale. Characterization results show that the readout interface achieves the target 

8-bit resolution. 

The data acquisition unit is designed based on the dual-channel operation to acquire 

amplitude and differential phase of the response and source signals. Data acquisition and sine 

fitting are both proposed to be carried out using a single microcontroller. The main criteria to 

fulfill while designing the data acquisition and processing unit are low-cost (< 10$), real-time 

and no need for complicated post-processing of the data. 

Optimized setup and bias and experiment conditions are investigated and an effective 

method specifically for drift control while acquiring real-time data is shown. 

Amplification/filtering board and the data acquisition and processing units are carefully 

characterized. In this way, the data obtained from the actual experiment can be interpreted 

more reliably knowing that the read-out unit performance is as expected. 

Actual experiments with MCLR results are promising proof of concept for the 

effectiveness of the proposed read-out method. The utilized electrodes for the measurements 

presented in this thesis are patterned gold electrodes available to purchase commercially. The 
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advantage of the structure introduced in this thesis is that the designed interface can be 

configured to be interfaced with any range of capacitive transducer impedance, given the 

design method and the balancing array values. 

The design details provided here, provide the firsthand knowledge for users from 

different areas than electrical engineering to make their own custom-designed data acquisition 

unit for their sensors or test the performance of a designed and fabricated transducer in a bridge 

scheme. 

 



www.manaraa.com

104 

REFERENCES  

 
[1]   https://en.wikipedia.org/wiki/Algal_bloom 

[2]  G.A. Codd, Cyanobacterial toxins: Occurrence, properties and biological significance, Water Sci. 
Technol. vol. 32, pp.  149–156, 1995. 

[3]  G. A. Codd, L. F. Morrison, and J. S. Metcalf, “Cyanobacterial toxins: risk management for health 
protection,” Toxicol. Appl. Pharmacol., vol. 203, no. 3, pp. 264–272, Mar. 2005. 

[4]   https://en.wikipedia.org/wiki/Microcystin-LR 

[5]   “Microcystis aeruginosa and the Effects of Microcystin-LR on Ecosystems and Human Health - 
microbewiki.”[Online].Available:https://microbewiki.kenyon.edu/index.php/Microcystis_aerugin
osa_and_the_Effects_of_Microcystin-LR_on_Ecosystems_and_Human_Health. [Accessed: 30-
Jan-2018]. 

[6]   B. G. Kotak, R. W. Zurawell, E. E. Prepas, and C. F. B. Holmes, “Microcystin-LR concentration 
in aquatic food web compartments from lakes of varying trophic status.” Can. J. Fish. Aquat. Sci., 
1996. 

[7]   “Cyanobacterial toxins: Microcystin-LR in Drinking-water.” World Health Organization, 2003. 

[8]  Y. M. Kim, S. W. Oh, S. Y. Jeong, D. J. Pyo, and E. Y. Choi, “Development of an ultrarapid one-
step fluorescence immunochromatographic assay system for the quantification of microcystins,” 
Environ. Sci. Technol., vol. 37, no. 9, pp. 1899–1904, May 2003. 

[9]   F. M. dos Anjos et al., “Detection of harmful cyanobacteria and their toxins by both PCR 
amplification and LC-MS during a bloom event,” Toxicon, vol. 48, no. 3, pp. 239–245, Sep. 2006. 

[10]   S. D. Soelberga, R. C. Stevensa, A. P. Limayeb, and C. E. Furlonga, “Surface Plasmon 
Resonance (SPR) Detection Using AntibodyLinked Magnetic Nanoparticles for Analyte Capture, 
Purification, Concentration and Signal Amplification,” Anal Chem., vol. 81, no. 6, pp. 2357–2363 

[11]   G. Ertürk, B. Mattiasson, “Capacitive Biosensors and Molecularly Imprinted Electrodes,” 
Sensors, vol. 17, pp. 390-411, 2017. 

[12]   S. Loyprasert, P. Thavarungkul, P. Asawatreratanakul, B. Wongkittisuksa, C. Limsakul, and P. 
Kanatharana, “Label-free capacitive immunosensor for microcystin-LR using self-assembled 



www.manaraa.com

105 

thiourea monolayer incorporated with Ag nanoparticles on gold electrode,” Biosens. Bioelectron., 
vol. 24, no. 1, pp. 78–86, Sep. 2008. 

[13]   H. Jung, Y. W. Chang, G. Lee, S. Cho, M. Kang, J. Pyun, “A capacitive biosensor based on an 
interdigitated electrode with nanoislands,” Analytica Chimica Acta, vol. 844, pp. 27–34, 2014. 

[14]   Z. Zou, J. Kai, M. J. Rust, J. Han, C. H. Ahn, “Functionalized nano interdigitated electrodes 
arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric 
measurement,” Sensors and Actuators A, vol. 136, pp. 518–526, 2007. 

[15]   K. V. Singh, A. M. Whited, Y. Ragineni, T. W. Barrett, J. King, R. Solanki, “3D nanogap 
interdigitated electrode array biosensors,” Anal Bioanal Chem, vol. 397, pp. 1493–1502, 2010. 

[16]   H. Li, X. Liu, L. Li, X. Mu, R. Genov, A. J. Mason, " CMOS electrochemical instrumentation 
for biosensor microsystems: A review," Sensors, vol. 17, 2017. 

[17]   L.N. Sangolkar, S.S. Maske, T. Chakrabarti. “Methods for determining microcystins (peptide 
hepatotoxins) and microcystin-producing cyanobacteria,“ Water Res., vol. 40, pp. 3485–3496, 
2006. 

[18]   Shen, P.P., Shi, Q., Hua, Z.C., Kong, F.X., Wang, Z.G., Zhuang, S.X., Chen, D.C., “Analysis 
of  microcystins in cyanobacteria blooms and surface water samples from Meiliang bey, Taihu lake, 
China,” Environ. Int., vol. 29, no. 5, pp. 641–647, 2003. 

[19]   Zhang, F., Yang, S.H., Kang, T.Y., Cha, G.S., Nam, H., Meyerhoff, M.E., “A rapid competative 
binding nonseperation enzyme immunoassay (NEEIA) test strip for microcystin-LR (MCLR) 
determination,” Biosens. Bioelectron., vol. 22, no. 7, pp. 1419–1425, 2007. 

[20]   H.-C. Shi et al., “Automated Online Optical Biosensing System for Continuous Real-Time 
Determination of Microcystin-LR with High Sensitivity and Specificity: Early Warning for 
Cyanotoxin Risk in Drinking Water Sources,” Environ. Sci. Technol., vol. 47, no. 9, pp. 4434–
4441, May 2013. 

[21]   J. S. Daniels and N. Pourmand, “Label-Free Impedance Biosensors: Opportunities and 
Challenges,” Electroanalysis, vol. 19, no. 12, pp. 1239–1257, May 2007. 

[22]   M. Labib, M. Hedström, M. Amin, B. Mattiasson, " A novel competitive glucose biosensor 
based on concanavalin A-labeled nanogold collids assembeled on polytyramine-modified gold 
electrode," Analytica Chimia Acta, vol. 659, pp.194-200, 2010. 



www.manaraa.com

106 

[23]   J. Rickert, W. Göpel, W. Beck, G. Jung, and P. Heiduschka, “A ‘mixed’ self-assembled 
monolayer for an impedimetric immunosensor,” Biosens. Bioelectron., vol. 11, no. 8, pp. 757–768, 
Jan. 1996. 

[24]   E. Katz and I. Willner, “Probing Biomolecular Interactions at Conductive and Semiconductive 
Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and 
Enzyme Biosensors,” Electroanalysis, vol. 15, no. 11, pp. 913–947, Jul. 2003. 

[25]   A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. 
Wiley, 2000. 

[26]   C. Berggren, B. Bjarnason, and G. Johansson, “Capacitive Biosensors,” Electroanalysis, vol. 
13, no. 3, pp. 173–180, Mar. 2001. 

[27]    “Basic overview of the working principle of a potentiostat/galvanostat (PGSTAT) – 
Electrochemical cell setup,” Autolab application note EC08, Dec. 2011.  

[28]   S. Loyprasert, M. Hedström, P. Thavarungkul, P. Kanatharana, B. Mattiasson " Sub-attomolar 
detection of cholera toxin using a label-free capacitive immunosensor," Biosensors and 
Bioelectronics, vol. 25, pp.1977-1983, 2010. 

[29]   M. Labib, M. Hedström, M. Amin, B. Mattiasson, " A novel competitive glucose biosensor 
based on concanavalin A-labeled nanogold collids assembeled on polytyramine-modified gold 
electrode," Analytica Chimia Acta, vol. 659, pp.194-200, 2010. 

[30]   C. Berggren, P. Stålhandske, J. Brundell, G. Johansson, A feasibility study of a capacitive 
biosensor for direct detection of DNA hybridization, Electroanalysis., vol. 11, pp. 156–160, 1999. 

[31]   R. Pradhan, A. Mitra, S. Das, Characterization of electrode/electrolyte interface of ECIS 
devices, Electroanalysis.vol.  24, pp. 2405–2414, 2012. 

[32]   W. Franks, I. Schenker, P. Schmutz, A. Hierlemann, “Impedance characterization and 
modeling of electrodes for biomedical applications,” IEEE Trans. Biomed. Eng., vol. 52, pp. 1295–
1302, 2005. 

[33]   X. Huang, R.W. Pascal, K. Chamberlain, C.J. Banks, M. Mowlem, H. Morgan, A miniature, 
high precision conductivity and temperature sensor system for ocean monitoring, IEEE Sens. J., 
vol. 11, pp. 3246–3252, 2011. 



www.manaraa.com

107 

[34]   C. Sontimuang, R. Suedee, F. Dickert, “Interdigitated capacitive biosensor based on 
molecularly imprinted polymer for rapid detection of Hev b1 latex allergen,” Analytical 
Biochemistry, vol. 410, pp. 224–233, 2011. 

[35]   F. C. Carvalho, D. C. Martins, A. Santos, M. Roque-Barreira, P. R. Bueno, “Evaluating the 
equilibrium association constant between artinm lectin and myeloid leukemia cells by impedimetric 
and piezoelectric label free approaches,” Biosensors, vol. 4, pp. 358-369, 2014. 

[36]   R. F. Taylor, I. G. Marenchic, and R. H. Spencer, “Antibody- and receptor-based biosensors 
for detection and process control,” Anal. Chim. Acta, vol. 249, no. 1, pp. 67–70, Jan. 1991. 

[37]   K. Lee, S. Choi, J. O. Lee, J. Yoon, G. Cho, “CMOS capacitive biosensor with enhanced 
sensitivity for label-free dna detection,” IEEE Int. Solid-State Circuts Conf. (ISSCC), pp. 120-122, 
Feb. 2012. 

[38]   J. Liu, M. M. Chisti, and X. Zeng, “General Signal Amplification Strategy for Nonfaradic 
Impedimetric Sensing: Trastuzumab Detection Employing a Peptide Immunosensor,” Anal. Chem., 
vol. 89, no. 7, pp. 4013–4020, Apr. 2017. 

[39]   A. Manickam, A. Chevalier, M. McDermott, A. D. Ellington, and A. Hassibi, “A CMOS 
Electrochemical Impedance Spectroscopy (EIS) Biosensor Array,” IEEE Trans. Biomed. Circuits 
Syst., vol. 4, no. 6, pp. 379–390, Dec. 2010. 

[40]   D. Huang, H. Leung, Reconstruction of drifting sensor responses based on papoulis–gerchberg 
method, IEEE Sens. J. 9 (2009) 595–604. 

[41]   K. C. Nguyen, “ Quantitative analysis of COOH-terminated alkanethiol SAMs on gold 
nanoparticle surfaces,” Adv. Nat. Sci.: Nanosci. Nanotechnol. Vol. 3, 045008 (5pp), 2012. 

[42]   M. l Riepla, V. M. Mirskya, I. Novotnyb,V. Tvarozekb, V. Rehacekb, O. S. Wolfbeis, 
“Optimization of capacitive affnity sensors: drift suppression and signal amplification,” Analytica 
Chimica Acta, vol. 392, pp.77-84, 1999. 

[43]   O. Ceylan, G. K. Mishra, M. Yazici, R. C. Cakmakci, J. H. Niazi, A. Qureshi, Y. Gurbuz, 
“Development of hand-held point-of-care diagnostic device for detection of multiple cancer and 
cardiac disease biomarkers,” IEEE  Int. Symp. Circuits & Syestems (ISCAS), 2018.  

[44]   BL Theraja & AK Theraja, A text Book of “Electrical Technology.” 2002. 

[45]   R. Downs, Bridge Measurement Systems, Precision Analog Applications Seminar, Section 5, 
Texas Instruments, 2006. 



www.manaraa.com

108 

[46]   S. C. Bera, S. Chattopadhyay, "A modified Schering bridge for measurement of dielectric 
parameters of a material and capacitance of a capacitive transducer," Measurement, vol. 33, pp. 3-
7, 2003. 

[47]   M. Fonseca da Silva, A. Cruz Sera, “Study of the sensitivity in an automatic capacitance 
measurement system,” IEEE Instrum. and Meas. Conf., pp. 329-334, 1997. 

[48]   P. Holmberg, “Automatic balancing of AC bridge circuits for capacitive sensor elements,”  
IEEE Trans. on Instrum. and Meas., pp. 803-805, 1995. 

[49]   W. Q. Yang, “Aself balancing circuit to measure capacitance and loss conductance for 
industrial transducer aplications,” IEEE Trans. on Instrum. and Meas., vol.45, No, 6, pp. 955-958, 
1996. 

[50]   M. Tavakoli, R. Sarpeshkar, "An offset-canceling low-noise lock-in architechture for 
capacitive sensing," IEEE J. Solid-State Circuits., vol. 38, no. 2, pp. 244-253, Feb. 2003. 

[51]   B. Maundy, S. J. G. Gift, "Strain Guage Amplifier Circuits," IEEE Trans. Instrum. Meas., vol. 
62, no. 4, pp. 693–700, Apr. 2013. 

[52]   H. Sun, D. Fang, K. Jia, F. Maarouf, H. Qu, H. Xie, "A low-power low-noise dual-chopper 
amplifier for capacitive CMOS-MEMS accelerometers," IEEE Sensors J., vol. 11, no. 4, pp. 925-
933, April. 2011. 

[53]   “DN1023 - Precision Matched Resistors Automatically Improve.” [Online]. Available: 
http://studylib.net/doc/18055731/dn1023---precision-matched-resistors-automatically-improve. 
[Accessed: 30-Jan-2018]. 

[54]   R. Pallas-Areny and J. G. Webster, “Common mode rejection ratio for cascaded differential 
amplifier stages,” IEEE Trans. Instrum. Meas., vol. 40, no. 4, pp. 677–681, Aug. 1991. 

[55]   J. Karki, “Fully-Differential Amplifiers.” Texas Instruments, 2016. 

[56]   H. Zumbahlen, Basic Linear Design. Analog Devices, Incorporated, 2005. 

[57]   R. C. Gesteland, B. Howland, J. Y. Lettvin, and W. H. Pitts, “Comments on Microelectrodes,” 
Proc. IRE, vol. 47, no. 11, pp. 1856–1862, Nov. 1959. 



www.manaraa.com

109 

[58]   “Noise Analysis In Operational Amplifier Circuits (Rev. B), slva043b - TI.com.” [Online]. 
Available: http://www.ti.com/general/docs/litabsmultiplefilelist.tsp?literatureNumber=slva043b. 
[Accessed: 30-Jan-2018]. 

[59]   T. J. Sobering, “Equivalent Noise Bandwidth,” Kans. State Univ. May, 1991. 

[60]   R. Pintelon and J. Schoukens, “An improved sine-wave fitting procedure for characterizing 
data acquisition channels,” IEEE Trans. Instrum. Meas., vol. 45, no. 2, pp. 588–593, Apr. 1996. 

[61]   P. M. Ramos, A. C. Serra, "A new sine-fitting algorithm for accurate amplitude and phase 
measurements in two channel acquisition systems," Measurement, vol. 41, pp. 135-143, 2008. 

[62]   A. Masi, A. Danisi, M. D. Castro, R. Losito, "Real-time high precision reading algorithm for 
the ironless inductive position sensor, " IEEE Trans. Nucl. Sci., vol. 60, no. 5, pp. 3661-3668, Oct. 
2013. 

[63]   Standard for Digitizing Waveform Records, IEEE Std. 1057-1994, Dec. 1994. 

[64]   P. M. Ramos, F. M. Janeiro, M. Tlemçani, A. C. Serra, "Recent developments on impedance 
measurements with DSP-based ellipse-fitting algorithms,"IEEE Trans. Instrum. Meas., vol. 58, 
no.5, pp. 1680–1689, May. 2009. 

[65]   P. M. Ramos, F. M. Janeiro, T. Radil, "Comparison of impedance measurement in a DSP using 
ellipse-fit and seven-parameter sine-fit algorithms," Measurement, vol. 42, pp. 1370-1379, 2009. 

[66]   T. Andersson, P. Händel, "IEEE Standard 1057, Cramér-Rao bound and the parsimony 
principle," IEEE Trans. Instrum. Meas., vol. 55, no.1, pp. 44–53, Feb. 2006. 

[67]   M. Martino, R. Losito, A. Masi, "Analytical metrological characterization of the three-
parameter sine fit algorithm," ISA Transactions, vol. 51, pp. 262-270, 2012. 

[68]   A. H-S. Ang, W. H. Tang, "Probability Concepts in Engineering: Emphasis on Applications to 
Civil and Environmental Engineering," 2nd edition, John Wiley & Sons, Inc. 2007.  

[69]   T. Piasecki, "Fast impedance measurements at very low frequencies using curve fitting 
algorithms," Meas. Sci. Technol. vol. 26, 2015.  

[70]   F. Algeria, A. C. Serra, "Gaussian jitter induced bias of sine wave amplitude estimation using 
three parameter sine fitting,"IEEE Trans. Instrum. Meas., vol. 59, no.9, pp. 2328–2333, Sep. 2010. 


	AC/DC differential bridge based solution-electrode interfacial capacitance biosensor, for field-deployable real-time and low-cost detection of MCLR in drinking water.
	Recommended Citation

	Microsoft Word - Sara_Neshani_Thesis.docx

